题意:

  给一个长度为n的字符串,定义$k=\floor{log_2 n}$

  一共k轮操作,第i次操作要删除当前字符串恰好长度为$2^{i-1}$的子串

  问最后剩余的字符串字典序最小是多少?

分析:

  首先很容易得到一个性质,那就是删除的那些串是可以不交叉的
  很容易想到一个很简单的dp

  dp[i][j]表示考虑原串的前i位,删除状态为j的情况下字典序最小的字符串(注意dp里面保存的是个字符串)

  那么很明显就是个O(n^3logn)的dp,无法通过

  dp里是一个字符串这个东西是很浪费时间而且很不优美的

  根据题解的做法,重新设计状态

  dp[i][j]表示已经确定了最终字符串的前i位,目前删除情况为j的情况下,字典序最小的字符串

  这样设计状态我们会发现一个性质,那就是如果dp[i][j]<dp[i][k],那么dp[i][k]就不起作用了

  所以dp数组可以用bool值来表示该状态是否为当前最小的字符串

  更新状态的话,根据确定位数i和删除位数j就知道那些"1"对应字符串的下一位是多少了,更新新的最小字符串

  然后我们要考虑当前阶段给后面要删除几个数,这里即使要求满足若一个状态的某个子集是真,那么它就是真

  这用一个高维前缀和解决即可

 #include<bits/stdc++.h>
using namespace std;
const int maxn=;
char s[maxn+];
bool dp[maxn+][maxn+];
int n,l,m;
string ans;
int main()
{
scanf("%s",s);
n=strlen(s);
l=;
while((<<(l+))<=n) ++l;
m=<<l;
for(int j=;j<m;++j)
dp[][j]=;
for(int i=;i<=n-m+;++i)
{
for(int j=;j<m;++j) dp[i][j]=dp[i-][j];
char mi='z';
for(int j=;j<m;++j)
if(dp[i-][j]) mi=min(mi,s[i-+j]);
for(int j=;j<m;++j)
if(dp[i][j]&&s[i-+j]!=mi) dp[i][j]=; for(int j=;j<m;++j)
for(int k=;k<l;++k)
if(j&(<<k)) dp[i][j]|=dp[i][j^(<<k)];
ans=ans+mi; }
cout<<ans<<endl;
}

codeforces 938F(dp+高维前缀和)的更多相关文章

  1. SPOJ.TLE - Time Limit Exceeded(DP 高维前缀和)

    题目链接 \(Description\) 给定长为\(n\)的数组\(c_i\)和\(m\),求长为\(n\)的序列\(a_i\)个数,满足:\(c_i\not\mid a_i,\quad a_i\& ...

  2. HDU.5765.Bonds(DP 高维前缀和)

    题目链接 \(Description\) 给定一张\(n\)个点\(m\)条边的无向图.定义割集\(E\)为去掉\(E\)后使得图不连通的边集.定义一个bond为一个极小割集(即bond中边的任意一个 ...

  3. Codeforces 449D Jzzhu and Numbers(高维前缀和)

    [题目链接] http://codeforces.com/problemset/problem/449/D [题目大意] 给出一些数字,问其选出一些数字作or为0的方案数有多少 [题解] 题目等价于给 ...

  4. Codeforces 1208F - Bits And Pieces(高维前缀和)

    题面传送门 题意:求 \(\max\limits_{i<j<k}a_i|(a_j\&a_k)\). \(1\leq n \leq 10^6,1\leq a_i\leq 2\time ...

  5. LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望

    传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...

  6. cf449D. Jzzhu and Numbers(容斥原理 高维前缀和)

    题意 题目链接 给出\(n\)个数,问任意选几个数,它们\(\&\)起来等于\(0\)的方案数 Sol 正解居然是容斥原理Orz,然而本蒟蒻完全想不到.. 考虑每一种方案 答案=任意一种方案 ...

  7. EOJ-3300 奇数统计(高维前缀和)

    题目链接: https://acm.ecnu.edu.cn/problem/3300/ 题目大意: 给n个数,求在n个数中选两个数(可重复),使得这两个数的组合数是奇数,求总共有多少种取法. 解题思路 ...

  8. SPOJ Time Limit Exceeded(高维前缀和)

    [题目链接] http://www.spoj.com/problems/TLE/en/ [题目大意] 给出n个数字c,求非负整数序列a,满足a<2^m 并且有a[i]&a[i+1]=0, ...

  9. hihocoder1496(高维前缀和)

    题意:给定N个数A1, A2, A3, ... AN,小Ho想从中找到两个数Ai和Aj(i ≠ j)使得乘积Ai × Aj × (Ai AND Aj)最大.其中AND是按位与操作. 第一行一个整数N( ...

随机推荐

  1. HttpClient 接口调用

    String url = "http://127.0.0.1:8080/api"; //然后根据表名获取公司信息 HttpPost httppost = new HttpPost( ...

  2. 4.03 使用NULL代替默认值

    问题:在一个定义了默认值的列插入数据,并且需要不管该列的默认值是什么,都将该列值设为NULL.考虑一下下面的表: create table D (id interger default 0, foo ...

  3. xorequation(DFS完全枚举)

    题目 有一个含有N个未知数的方程如下: x1^x2^...^xn= V,给定N,V,再给定正整数a1,a2,...an满足1≤ai≤9且∏Ni=1(ai+1)  ≤ 32768,请输出所有满足0≤xi ...

  4. DROP TYPE - 删除一个用户定义数据类型

    SYNOPSIS DROP TYPE name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP TYPE 将从系统表里删除用户定义的类型. 只有类 ...

  5. Web前端基础怎么学? JavaScript、html、css知识架构图

    以前开发者只要掌握 HTML.CSS.JavaScript 三驾马车就能胜任一份前端的工作了.而现在除了普通的编码以外,还要考虑如何性能优化,如何跨端.跨平台实现功能,尤其是 AI.5G 技术的来临, ...

  6. Maven项目框架源代码和文档的查看

    方便maven项目的调试和源代码学习,可以通过添加maven插件的方式下载源代码和文件进行查看. mavan插件节点结构如下: <project xmlns="http://maven ...

  7. P2257 YY的GCD (莫比乌斯反演)

    题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...

  8. POJ-1190-生日蛋糕(深搜,剪枝)

    生日蛋糕 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23049 Accepted: 8215 Description 7月1 ...

  9. MySQL sys Schema

    MySQL sys Schema 使用sys Schema的先决条件 使用sys Schema sys Schema Progress Reporting sys Schema Object Refe ...

  10. 28. TRIGGERS ,29. USER_PRIVILEGES,30. VIEWS

    28. TRIGGERS TRIGGERS表提供有关触发器的信息.要查看有关表的触发器的信息,您必须具有该表的TRIGGER权限. TRIGGERS表有以下列: TRIGGER_CATALOG :触发 ...