Codeforces 1076D——最短路算法
题目
给你一个有n个顶点、m条边的无向带权图。需要擦除一些边使得剩余的边数不超过k,如果一个点在原始图到顶点1的最短距离为d,在删边后的图中到顶点的最短距离仍是d,则称这种点是 good。问如何删边,使得 good点最多。
分析
首先调用最短路算法求各点到顶点1的最短距离,同时记录下每点在最短路上的前一个顶点。然后从顶点1出发搜索一个大小为k的联通块即可(如果够k个)
代码
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std; typedef long long ll; const ll INF = (ll) << ;
const int maxv = + ; //最大顶点数
const int maxe = * + ; //最大边数
ll dis[maxv]; //源到各顶点的最短距离
int vis[maxv]; //记录是否被收录,用来代替集合S
int head[maxv]; //采用链式前向星建图
int pre[maxv]; //最短路树,记录前一个节点 vector<int>ans; //记录答案
int n, m, k; //顶点数、边数、最大保留的边数 struct Node
{
int u;
ll d; //该节点的编号与距离
bool operator < (const Node x) const
{
return d > x.d;
}
}; struct Edge
{
int to, w, next;
}edge[maxe]; inline void addedge(int u, int v, int w, int id)
{
edge[id].to = v;
edge[id].w = w;
edge[id].next = head[u];
head[u] = id;
}
//s为起点
void Dijsktra(int s)
{
priority_queue<Node>q; //取出集合T中的最小值
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
//memset(dis, INF, sizeof(dis)); //与邻接矩阵不同,这里初始化为INF就可以,原因自己想
for (int i = ; i <= n; i++) dis[i] = INF; dis[s] = ;
q.push(Node{ s, dis[s] });
while (!q.empty())
{
Node x = q.top(); q.pop();
int u = x.u; if (vis[u]) continue; vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next) //松弛与u直接相邻的顶点
{
int v = edge[i].to;
int w = edge[i].w;
if (!vis[v] && dis[u] + w < dis[v])
{
dis[v] = dis[u] + w;
pre[v] = u; //记录最短路树的父节点
q.push(Node{ v,dis[v] });
}
}
}
} //从s出发找出最短路树上的k个节点(不到k个就是全部节点)
void bfs(int s)
{
queue<int>q;
q.push(s);
while (!q.empty())
{
int u = q.front(); q.pop();
for (int e = head[u]; e != -; e = edge[e].next)
{
int v = edge[e].to;
if (pre[v] == u && ans.size() < k)
{
q.push(edge[e].to);
ans.push_back(e / + ); //无向边建图时存了两遍,真实序号位e/2+1
}
}
if (ans.size() >= k) break;
}
} int main()
{
while (scanf("%d%d%d",&n,&m,&k) == )
{
memset(head, -, sizeof(head));
int id = ;
for (int i = ; i < m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w,id++); addedge(v, u, w,id++);
} Dijsktra(); ans.clear();
bfs();
int cnt = ans.size();
printf("%d\n", cnt);
for (int i = ; i < cnt; i++)
printf("%d%c", ans[i], i == cnt - ? '\n' : ' ');
}
return ;
}
参考链接:https://blog.csdn.net/SparkFucker/article/details/84024243
Codeforces 1076D——最短路算法的更多相关文章
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
- Floyd最短路算法
Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...
- Book 最短路算法
用HDU2544整理一下最近学的最短路算法 1.Dijkstra算法 原理:集合S表示已经找到最短路径的点,d[]表示当前各点到源点的距离 初始时,集合里面只有源点,当每个点u进入集合S时,用d[u] ...
- 近十年one-to-one最短路算法研究整理【转】
前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...
- 【啊哈!算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...
- 【啊哈!算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- Comet OJ 热身赛(E题)(处理+最短路算法)
dijkstra 已经提交 已经通过 42.86% Total Submission:189 Total Accepted:81 题目描述 Eagle Jump公司正在开发一款新的游戏.泷本一二三作为 ...
- 【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...
随机推荐
- javascript之this指向
情况一: 如果一个函数中有this,但是没有被上一级调用,this指向window 例: function a(){ var num='11'; console.log(this.num); //u ...
- HDFS之二:HDFS文件系统JavaAPI接口
HDFS是存取数据的分布式文件系统,HDFS文件操作常有两种方式,一种是命令行方式,即Hadoop提供了一套与Linux文件命令类似的命令行工具.HDFS操作之一:hdfs命令行操作 另一种是Java ...
- Linear Regression_最小二乘(LMS)
%% Machine Learining----Linear Regression close all clear %%data load Year = linspace(,,); Price = [ ...
- Codeforces - 9D - How many trees? - 简单dp - 组合数学
https://codeforces.com/problemset/problem/9/D 一开始居然还想直接找公式的,想了想还是放弃了.原来这种结构是要动态规划. 状态是知道怎么设了,$t_{nh} ...
- 2016多校8th 1008【线段树-神题】
题意: T N M N个数 M个操作 一个数组A, 有3个操作 1 l r x,a[l]-a[r]都+x 2 l r,a[i]=sqrt(a[i]),l<=i<=r 3 l r,求和,a[ ...
- bzoj 4550: 小奇的博弈【博弈论+dp】
首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了) 然后就不会了 参考 http://www.cnblogs.com/CQzhangyu/p/770 ...
- bzoj 2806: [Ctsc2012]Cheat【广义SAM+二分+dp+单调队列】
把模板串建一个广义SAM 然后在线查询,每次在SAM上预处理出一个a[i]表示i位置向前最多能匹配多长的模板串 二分答案L,dp判断,设f[i]为·~i有几个匹配,转移显然是f[i]=max{f[i- ...
- print打印
print打印输出的优点是简单直接粗暴有效,就是用print()把可能有问题的变量打印出来看看缺点是将来还得删掉它,想想程序里到处都是print(),运行结果也会包含很多垃圾信息 __________ ...
- @ConfigurationProperties和@EnableConfigurationProperties配合使用
https://blog.csdn.net/u010502101/article/details/78758330 @ConfigurationProperties注解主要用来把properties配 ...
- linux虚拟机时间不准的问题
如果时区不准, 使用tzselect命令(timezone选择),选择北京时间.然后把输出的命令写入/etc/profile.d/time.sh里. 然后用crontab写定时任务,每天执行一次. 3 ...