[luoguP2760] 科技庄园(背包DP)
每次拿完还得回去。。。
数据中有两个需要注意的地方:
- 存在桃树上有桃子但是摘 0 次的情况
- 题目中要求体力不能为0,因此就算到达了重点体力也不能为0,所以实际上允许使用的体力为 a - 1
把每个桃树想象成物品,体力和时间的最小值想象成空间
由于摘完一次就要回到起点,所以每颗桃树的体力为 2 * (x + y), x y 分别为此桃树对应的横纵坐标
#include <cstdio>
#include <iostream>
#define N 1001
#define M 1000001
#define min(x, y) ((x) < (y) ? (x) : (y))
#define max(x, y) ((x) > (y) ? (x) : (y)) int n, m, t, d, c, cnt;
int a[N][N], b[N][N], num[M], val[M], cost[M], f[M]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} int main()
{
int i, j, k;
n = read();
m = read();
t = read();
d = read();
c = min(t, d - 1);
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
a[i][j] = read();
if(a[i][j])
{
cnt++;
val[cnt] = a[i][j];
cost[cnt] = 2 * (i + j);
}
}
cnt = 0;
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
b[i][j] = read();
if(a[i][j])
{
++cnt;
num[cnt] = b[i][j];
}
}
for(i = 1; i <= cnt; i++)
for(j = c; j >= 1; j--)
for(k = 1; k <= num[i]; k++)
if(j >= cost[i] * k)
f[j] = max(f[j], f[j - k * cost[i]] + k * val[i]);
printf("%d\n", f[c]);
return 0;
}
[luoguP2760] 科技庄园(背包DP)的更多相关文章
- 背包dp整理
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...
- hdu 5534 Partial Tree 背包DP
Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...
- HDU 5501 The Highest Mark 背包dp
The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
- Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp
B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...
- noj [1479] How many (01背包||DP||DFS)
http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- G - Surf Gym - 100819S -逆向背包DP
G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
随机推荐
- P2746 [USACO5.3]校园网Network of Schools(Tarjan)
P2746 [USACO5.3]校园网Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 ...
- 赋予option元素点击事件后,点击select时却触发了option事件。如何解决?
将select的优先级提到option之前就可以了. 方法:为select元素添加position:relative: <select class="adt" name=&q ...
- GoAhead4.1.0 开发总结二(自定义使用)
环境 官方文档:https://www.embedthis.com/goahead/doc/ 源码下载: goahead-4.1.0-src.tgz 系统平台:Ubuntu 12.04.4 gcc v ...
- golang——随机数(math/rand包与crypto/rand包)
1.math/rand 包 1.1.math/rand 包实现了伪随机数生成器 1.2.主要方法 (1)func Seed(seed int64) 设置随机种子,不设置则默认Seed(1) (2)fu ...
- (博弈论)51NOD 1069 Nim游戏
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...
- codechef: BINARY, Binary Movements
非常有毛病的一道题,我一个一个读字符死活过不去,改成整行整行读就 A 了... 做法就是...最小点覆盖... 我们发现可以把一个点向上跳看做被吃掉了,然后最顶层的点是无法向上跳所以不能被吃掉,然后被 ...
- C#结构体+结构体与类的区别
C# 结构(Struct) 在 C# 中,结构是值类型数据结构.它使得一个单一变量可以存储各种数据类型的相关数据.struct 关键字用于创建结构. C# 结构的特点 您已经用了一个简单的名为 Boo ...
- java https客户端请求
String pathname = Test3.class.getResource("/client.jks").getFile(); System.out.println(pat ...
- C#学习-多线程小练习
1.双色球案例 namespace _18双色球案例 { public partial class Form1 : Form { private bool IsRunning; private Lis ...
- PostgreSQL与MySQL比较
特性 MySQL PostgreSQL 实例 通过执行 MySQL 命令(mysqld)启动实例.一个实例可以管理一个或多个数据库.一台服务器可以运行多个 mysqld 实例.一个实例管理器可以监视 ...