暴力推式子推诚卷积形式,但是看好多blog说多项式求逆不知道是啥..

\[\sum_{i=0}^{n}\sum_{j=0}^{n}S(i,j)*2^j*j!
\]

\[S(i,j)=\frac{1}{j!}\sum_{k=0}^{j}(-1)^k*C_j^k*(j-k)^i
\]

\[S(i,j)=\frac{1}{j!}\sum_{k=0}^{j}(-1)^k*\frac{j!}{k!(j-k)!}*(j-k)^i
\]

\[\sum_{i=0}^{n}\sum_{j=0}^{n}\frac{1}{j!}\sum_{k=0}^{j}(-1)^k*\frac{j!}{k!(j-k)!}*(j-k)^i*2^j*j!
\]

\[\sum_{i=0}^{n}\sum_{j=0}^{n}\sum_{k=0}^{j}(-1)^k*\frac{j!}{k!(j-k)!}*(j-k)^i*2^j
\]

\[\sum_{j=0}^{n}2^j*j!\sum_{k=0}^{j}(-1)^k*\frac{1}{k!(j-k)!}*\sum_{i=0}^{n}(j-k)^i
\]

\[\sum_{j=0}^{n}2^j*j!\sum_{k=0}^{j}\frac{(-1)^k}{k!}*\frac{\sum_{i=0}^{n}(j-k)^i}{(j-k)!}
\]

\[a[k]=\frac{(-1)^k}{k!},b[k]=\frac{\sum_{i=0}^{n}k^i}{k!}
\]

\[\sum_{j=0}^{n}2^j*j!\sum_{k=0}^{j}a[k]*b[j-k]
\]

于是就得到了卷积形式,可以上NTT了

顺便根据等比数列求和公式,\(\sum_{i=0}{i}kn=\frac{k^{n+1}-1}{k-1} \)

#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005,mod=998244353,G=3;
int n,fac[N],inv[N],fi[N],a[N],b[N],re[N],lm,bt,ans;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(G,(mod-1)/(i<<1));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[j+k];
y=1ll*w*a[i+j+k]%mod;
a[j+k]=((x+y)%mod+mod)%mod;
a[i+j+k]=((x-y)%mod+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int ni=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*ni%mod;
}
}
void ntt()
{
bt=1;
for(;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
for(int i=0;i<=lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*b[i]%mod;
dft(a,-1);
}
int main()
{
scanf("%d",&n);
inv[1]=1,fac[0]=fi[0]=1;
for(int i=1;i<=n;i++)
{
if(i!=1)
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fac[i]=1ll*fac[i-1]*i%mod;
fi[i]=fi[i-1]*inv[i]%mod;
}
a[0]=1;
for(int i=1;i<=n;i++)
a[i]=((i&1)?-1:1)*fi[i];
b[0]=1,b[1]=n+1;
for(int i=2;i<=n;i++)
b[i]=1ll*(ksm(i,n+1)-1)*inv[i-1]%mod*fi[i]%mod;
ntt();
for(int i=0;i<=n;i++)
ans=(ans+1ll*fac[i]*ksm(2,i)%mod*a[i]%mod)%mod;
printf("%d",(ans%mod+mod)%mod);
return 0;
}

bzoj 4555: [Tjoi2016&Heoi2016]求和【NTT】的更多相关文章

  1. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  3. bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  6. [BZOJ 4555][Tjoi2016&Heoi2016]求和

    题意 给定 $n$ , 求下式的值: $$ f(n)= \sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\ j\end{Bmatrix}\times 2^j\time ...

  7. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  8. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  9. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

随机推荐

  1. makefile的语法及写法

    什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作,但我觉得要作一个好的和professional的程序员,makefile还是要 ...

  2. Linux后台运行命令nohub输出pid到文件(转)

    用nohup可以启动一个后台进程.让一个占用前台的程序在后台运行,并静默输出日志到文件: nohup command > logfile.txt & 但是如果需要结束这个进程,一般做法是 ...

  3. MySQL查询count(*)、count(1)、count(field)的区别收集

    经过查询研究得出这个和MySQL中用什么引擎有关,比如InnoDB和MyISAM在处理这count(*).count(1).count(field)都有不同的方式,还有就是和版本都有关系,不同的版本会 ...

  4. 使用Spring定时任务并且通过AOP监控任务执行情况

    原文:http://www.open-open.com/code/view/1426250803279 本文讲的是通过Spring注解的方式实现任务调度.只要引入了spring-context包就能够 ...

  5. chrome插件vimium的安装和使用

    vimium工具的作用:使你脱离鼠标,使用键盘方便操作页面,默认对所有网站生效 1.chrome商店里有的,但是,我怎么安装,都不行 2.源码安装:http://vimium.github.io/ h ...

  6. 【APUE】进程间通信之信号量

    信号量是一个计数器,用于多进程对共享数据对象的访问 为了获得共享资源,进程需要执行下列操作: 1)测试控制该资源的信号量 2)若此信号量为正,则进程可以使用该资源,进程将信号量减1,表示它使用了一个资 ...

  7. Linux 修改终端命令提示符颜色

    相信很多人已经看厌了Linux已成不变的命令提示符的颜色,多数人要么使用默认的绿色,要么在使用PUTTY的时候设置成绿色的,不知道是否有人想到提示符可以设置成其他的颜色呢,本文就说明命令提示符变量PS ...

  8. No module named '_sqlite3'问题解决

    Centos自带的python版本是2.7的,后面我自己装了3.5版本的,在创建应用的时候python manager.py startapp users 时,就会报No module named ' ...

  9. 读书笔记-HBase in Action-第三部分应用-(2)GIS系统

    本章介绍用HBase存储.高效查询地理位置信息. Geohash空间索引 考虑LBS应用中常见的两个问题:1)查找离某地近期的k个地点.2)查找某区域内地点. 假设要用HBase实现高效查找,首先要考 ...

  10. composer-安装插件包

    上一步完成后,选定国内镜像地址,以为下载插件包做准备 https://pkg.phpcomposer.com/ 安装完componser后使用下面这条命令即可(设置国内镜像地址): composer ...