bzoj 4555: [Tjoi2016&Heoi2016]求和【NTT】
暴力推式子推诚卷积形式,但是看好多blog说多项式求逆不知道是啥..
\]
\]
\]
\]
\]
\]
\]
设
\]
\]
于是就得到了卷积形式,可以上NTT了
顺便根据等比数列求和公式,\(\sum_{i=0}{i}kn=\frac{k^{n+1}-1}{k-1} \)
#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005,mod=998244353,G=3;
int n,fac[N],inv[N],fi[N],a[N],b[N],re[N],lm,bt,ans;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(G,(mod-1)/(i<<1));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[j+k];
y=1ll*w*a[i+j+k]%mod;
a[j+k]=((x+y)%mod+mod)%mod;
a[i+j+k]=((x-y)%mod+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int ni=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*ni%mod;
}
}
void ntt()
{
bt=1;
for(;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
for(int i=0;i<=lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*b[i]%mod;
dft(a,-1);
}
int main()
{
scanf("%d",&n);
inv[1]=1,fac[0]=fi[0]=1;
for(int i=1;i<=n;i++)
{
if(i!=1)
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fac[i]=1ll*fac[i-1]*i%mod;
fi[i]=fi[i-1]*inv[i]%mod;
}
a[0]=1;
for(int i=1;i<=n;i++)
a[i]=((i&1)?-1:1)*fi[i];
b[0]=1,b[1]=n+1;
for(int i=2;i<=n;i++)
b[i]=1ll*(ksm(i,n+1)-1)*inv[i-1]%mod*fi[i]%mod;
ntt();
for(int i=0;i<=n;i++)
ans=(ans+1ll*fac[i]*ksm(2,i)%mod*a[i]%mod)%mod;
printf("%d",(ans%mod+mod)%mod);
return 0;
}
bzoj 4555: [Tjoi2016&Heoi2016]求和【NTT】的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [BZOJ 4555][Tjoi2016&Heoi2016]求和
题意 给定 $n$ , 求下式的值: $$ f(n)= \sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\ j\end{Bmatrix}\times 2^j\time ...
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...
- BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...
随机推荐
- HDU 4738 割边
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- [bzoj2780][Spoj8093]Sevenk Love Oimaster_广义后缀自动机
Sevenk Love Oimaster bzoj-2780 Spoj-8093 题目大意:给定$n$个大串和$m$次询问,每次给出一个字符串$s$询问在多少个大串中出现过. 注释:$1\le n\l ...
- 解决idea中启动tomcat出现控制台乱码问题
尝试了很多方法,最后终于解决了,现在提供给大家一个我认为最简单也最有效的方案. 1.修改配置文件 找到idea的安装目录,在bin文件夹下找到以下两个文件,用记事本或者其他软件打开: 然后两个文件中都 ...
- java学习——关于搜索异常处理的总结
根据网上的资料可以知道,异常处理是为了检测到程序运行中发生的非正常情况的检测而设立的一种机制,异常的英文单词是exception,字面翻译就是“意外.例外”的意思,也就是非正常情况.关于平常我们经常遇 ...
- SAS学习笔记 - R的数据操作
1.对象 1.1 对象及其内在属性 R中的处理数据就是对象,每个对象可以包含多个元素.对象有两个内在属性:类型和长度.类型是对象元素的基本种类,共四种:数值型,字符型,复数型和逻辑型.对象的类型和长度 ...
- 电脑控制手机的另一选择——android vnc server
近来发现的Android上的原生VNC Server,就是说只要手机上安装并运行这个软件,即可实现电脑上查看并控制手机了. 首先是手机端. 1)下载androidvncserver: http://c ...
- Servlet第七课:ServletContext HttpSession 以及HttpServletRequest之间的关系
课程目标: ① 在Servlet中懂得ServletContext HttpSession 以及HttpServletRequest之间的关系 ② 懂得怎样使用它们 概念介绍: 1. [共同点]不管对 ...
- Coding Ninja 修炼笔记 (1)
大家好啊~我又回来了. 这次主要是给大家带来一些提升 Coding 效率的建议. 效率都是一点一滴优化出来的,虽然每一条建议给你带来的提升可能都不大,但是积累起来,仍然是一股不可忽视的力量. 第一条 ...
- android中init.rc文件的解析问题
init.rc中文件里会通过import /init.${ro.hardware}.rc文件,这个ro.hardware应该是某个详细的属性.而这个ro.hardware赋值应该是在Init进程中赋值 ...
- Java数据类型的分类
java支持的类型分为两类:基本类型和引用类型 一.基本类型 4类8种: (1)整型:int.short.long.byte. (2)浮点型:float.double. (3)字符型:char. (4 ...