P3811 【模板】乘法逆元

线性求逆元

逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也可以称$x$为$a$的倒数,

所以对于$\frac{a}{b} (\bmod {p})$ ,我们就可以求出$b$在$\bmod {p}$下的逆元,然后乘上$a$,再$\bmod {p}$,就是这个乘法逆元的值了。

一、exgcd求逆元(O(l$og_n$))

这个就是利用拓欧求解线性同余方程$a*x \equiv c (\bmod {b})$

的c=1的情况。我们就可以转化为$a*x + b*y = 1$,求解这个方程的解。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
using namespace std; void exgcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=,y=;
return;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
} int n,p; int main()
{
scanf("%d%d",&n,&p); for(int i=;i<=n;i++){
ll x,y;
exgcd(i,p,x,y);
x=(x%p+p)%p;
printf("%lld\n",x);
} return ;
}

Exgcd

二、快速幂+费马小定理

费马小定理:若$p$为素数,$a$为正整数,且$a,p$互质。 则有$a^{p-1} \equiv 1 (\bmod {p})$。

$a*x\equiv 1(\bmod {b})$

$a*x\equiv a^{p-1} (\bmod {b})$
$x \equiv a^{p-2} (\bmod {b})$

有点儿慢。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
using namespace std; int n,p; ll pow(int a,int b,int mod){
ll s=,t=a%mod;
for(;b;b>>=,t=1ll*t*t%mod)
if(b&) s=1ll*s*t%mod;
return s;
} int main()
{
scanf("%d%d",&n,&p); for(int i=;i<=n;i++){
printf("%lld\n",pow(i,p-,p));
} return ;
}

快速幂

三、线性递推求逆元

如何递推呢?

大佬说:推一下就好了嘛

蒟蒻(我):。。。=_=

首先$1^{-1}\equiv1(modp)$

设$p=k\times i+r$,$r < i$,$1< i < p$

那么$k\times i+r \equiv 0 (mod p)$

方程同乘$i^{-1},r^{-1}$得

$k\times r^{-1}+i^{-1} \equiv 0 (mod p)$

移项得:$i^{-1}\equiv -k\times r^{-1} (mod p)$

即$i^{-1}\equiv\lfloor{\frac{p}{i}}\rfloor \times (p mod i)^{-1} (mod p)$

也就是下面这一行代码:

inv[i]=(p-p/i)*inv[p%i]%p;

奉上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
#define N 10101010
using namespace std; int n,p;
ll inv[N];
int main()
{
scanf("%d%d",&n,&p);
inv[]=;
printf("1\n");
for(int i=;i<=n;i++){
inv[i]=(p-p/i)*inv[p%i]%p;
printf("%lld\n",inv[i]);
}
return ;
}

洛谷——P3811 【模板】乘法逆元的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  3. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  4. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  5. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

  6. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  7. 乘法逆元-洛谷-P3811

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. shell 爬虫 从日志分析到数据采集与分析

    [root@VM_61_158_centos ~]# curl http://ip.chinaz.com/220.112.233.179 |grep -e Whwtdhalf.*span.*span. ...

  2. Lucas模板&快速幂模板

    /* *********************************************** Author :guanjun Created Time :2016/5/20 0:28:36 F ...

  3. 基于Jquery插件Uploadify实现实时显示进度条上传图片

    网址:http://www.jb51.net/article/83811.htm     这篇文章主要介绍了基于Jquery插件Uploadify实现实时显示进度条上传图片的相关资料,感兴趣的小伙伴们 ...

  4. LVS集群体系和调度算法

    集群体系和调度算法 LVS集群体系架构 1)使用LVS架设的服务器集群系统有三个部分组成: 最前端的负载均衡层,用Load Balancer表示, 中间的服务器群组层,用Server Array表示, ...

  5. Android 在eclipse中没有出现AVD的解决方法(转载)

    转自:http://frabbit2013.blog.51cto.com/1067958/1243549 本文主要介绍在系统中成功配置好Android开发环境(即SDK is ok and ADT o ...

  6. js获取标签的三种方式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 贪心 Codeforces Round #263 (Div. 2) C. Appleman and Toastman

    题目传送门 /* 贪心:每次把一个丢掉,选择最小的.累加求和,重复n-1次 */ /************************************************ Author :R ...

  8. 莫队算法 BOJ 2038 [2009国家集训队]小Z的袜子(hose)

    题目传送门 /* 莫队算法:求出[l, r]上取出两只相同袜子的个数. 莫队算法是离线处理一类区间不修改查询类问题的算法.如果你知道了[L,R]的答案,可以在O(1)的时间下得到 [L,R-1]和[L ...

  9. Vue组件之间通信的三种方式

    最近在看梁颠编著的<Vue.js实战>一书,感觉颇有收获,特此记录一些比价实用的技巧. 组件是MVVM框架的核心设计思想,将各功能点组件化更利于我们在项目中复用,这类似于我们服务端面向对象 ...

  10. JOptionPane.showMessageDialog出现在浏览器下面的解决方法

    将JOptionPane.showMessageDialog(null, result, "发布公告:", JOptionPane.INFORMATION_MESSAGE);中的参 ...