洛谷——P3811 【模板】乘法逆元
P3811 【模板】乘法逆元
线性求逆元
逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也可以称$x$为$a$的倒数,
所以对于$\frac{a}{b} (\bmod {p})$ ,我们就可以求出$b$在$\bmod {p}$下的逆元,然后乘上$a$,再$\bmod {p}$,就是这个乘法逆元的值了。
一、exgcd求逆元(O(l$og_n$))
这个就是利用拓欧求解线性同余方程$a*x \equiv c (\bmod {b})$
的c=1的情况。我们就可以转化为$a*x + b*y = 1$,求解这个方程的解。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
using namespace std; void exgcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=,y=;
return;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
} int n,p; int main()
{
scanf("%d%d",&n,&p); for(int i=;i<=n;i++){
ll x,y;
exgcd(i,p,x,y);
x=(x%p+p)%p;
printf("%lld\n",x);
} return ;
}
Exgcd
二、快速幂+费马小定理
费马小定理:若$p$为素数,$a$为正整数,且$a,p$互质。 则有$a^{p-1} \equiv 1 (\bmod {p})$。
$a*x\equiv 1(\bmod {b})$
$a*x\equiv a^{p-1} (\bmod {b})$
$x \equiv a^{p-2} (\bmod {b})$
有点儿慢。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
using namespace std; int n,p; ll pow(int a,int b,int mod){
ll s=,t=a%mod;
for(;b;b>>=,t=1ll*t*t%mod)
if(b&) s=1ll*s*t%mod;
return s;
} int main()
{
scanf("%d%d",&n,&p); for(int i=;i<=n;i++){
printf("%lld\n",pow(i,p-,p));
} return ;
}
快速幂
三、线性递推求逆元
如何递推呢?
大佬说:推一下就好了嘛
蒟蒻(我):。。。=_=
首先$1^{-1}\equiv1(modp)$
设$p=k\times i+r$,$r < i$,$1< i < p$
那么$k\times i+r \equiv 0 (mod p)$
方程同乘$i^{-1},r^{-1}$得
$k\times r^{-1}+i^{-1} \equiv 0 (mod p)$
移项得:$i^{-1}\equiv -k\times r^{-1} (mod p)$
即$i^{-1}\equiv\lfloor{\frac{p}{i}}\rfloor \times (p mod i)^{-1} (mod p)$
也就是下面这一行代码:
inv[i]=(p-p/i)*inv[p%i]%p;
奉上代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define ll long long
#define N 10101010
using namespace std; int n,p;
ll inv[N];
int main()
{
scanf("%d%d",&n,&p);
inv[]=;
printf("1\n");
for(int i=;i<=n;i++){
inv[i]=(p-p/i)*inv[p%i]%p;
printf("%lld\n",inv[i]);
}
return ;
}
洛谷——P3811 【模板】乘法逆元的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- [洛谷P3811]【模板】乘法逆元
P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...
- 模板【洛谷P3811】 【模板】乘法逆元
P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
- 洛谷—— P3811 【模板】乘法逆元
https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...
- 【洛谷P3811】[模板]乘法逆元
乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...
- 乘法逆元-洛谷-P3811
题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
随机推荐
- spring 之 IOC 依赖注入详解
当我们对一个javaBean进行实例化时,在原本的情况下我们会选择新建一个接口,然后进行实例化,为了进一步降低耦合度我们还会使用工厂模式进行封装. 例: 当我们想要去造,Chinese.America ...
- iOS开发-多台机器共用证书问题
今天又被证书的问题卡壳了: 在公司的电脑上申请的开发.发布证书,回家用自己的电脑从苹果开发者中心上将证书和配置文件都下载下来提示用不了,弄了很久才想起.p12文件,必须从申请证书的电脑上导出,导入到自 ...
- bzoj2594 [Wc2006]水管局长数据加强版——LCT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2594 时间倒序一下,就是 魔法森林 那道题: 有个不解的地方,是 access 里面关于 p ...
- MogileFS的实现和bug解决
MogileFS的实现 准备三个主机: centos7.1:tracker节点.database节点.storage节点:192.168.213.251 centos7.2.centos7.3:sto ...
- bzoj 1650: [Usaco2006 Dec]River Hopscotch 跳石子【贪心+二分】
脑子一抽写了个堆,发现不对才想起来最值用二分 然后判断的时候贪心的把不合mid的区间打通,看打通次数是否小于等于m即可 #include<iostream> #include<cst ...
- P3174 [HAOI2009]毛毛虫(树形dp)
P3174 [HAOI2009]毛毛虫 题目描述 对于一棵树,我们可以将某条链和与该链相连的边抽出来,看上去就象成一个毛毛虫,点数越多,毛毛虫就越大.例如下图左边的树(图 1 )抽出一部分就变成了右边 ...
- 理想的正方形 HAOI2007(二维RMQ)
理想的正方形 省队选拔赛河南 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 有一个a*b的整数组成的矩阵,现 ...
- hdu1512 Monkey King(并查集,左偏堆)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1512 题目大意:有n个猴子,一开始每个猴子只认识自己.每个猴子有一个力量值,力量值越大表示这个猴子打架 ...
- jQuery——修改网页字体大小
HTML: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <lin ...
- 关于.Net中Process的使用方法和各种用途汇总(一):Process用法简介
简介: .Net中Process类功能十分强大.它可以接受程序路径启动程序,接受文件路径使用默认程序打开文件,接受超链接自动使用默认浏览器打开链接,或者打开指定文件夹等等功能. 想要使用Process ...