满足GL的组合一定包含GL每个质因数最大次幂个最小次幂,并且能做限制这些数不会超过600个

然后质因数最多8个,所以可以状压f[s1][s2]为选s1集合满足最大限制选s2集合满足最小限制

dfs一下预处理出质因数只选一个质因数的初始状态

然后dp,做一个前缀一个后缀,设f[i][j]为前i个质因数选成集合j的方案数,g[i][j]为后i个质因数选成集合j的方案数,然后转移很好想,就是f[i][va[i]|j]+=f[i-1][j]*rs[i],其中rs是满足第i个质因数的方案数,g同理

然后我们需要合并出来一个“空出一个数”这样的东西来回答询问,合并的时候用orFWT即可

包含集合s的方案数也加到s的方案数里,就是andFWT的正变换部分,这样统计答案的时候就不用跑一遍了

然后回答的时候就是统计一下x极大极小质因数次幂的贡献然后直接查空出来这个集合的部分,最后乘上这个集合的选区方案数即可

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100005,mod=1000000007,inv2=500000004;
int n,G,L,q,lm,p[N],tot,si[N],s[N],rs[N],va[N],con,f[605][70005],g[605][70005];
bool v[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(int &x,int y)
{
x+=y;
(x>=mod)?x-=mod:0;
}
void jian(int &x,int y)
{
x-=y;
(x<0)?x+=mod:0;
}
void dfs(int w,long long v,int s1,int s2)
{
if(w==tot+1)
{
s[s1|(s2<<tot)]++;
return;
}
for(int i=0;i<=si[w];i++)
{
dfs(w+1,v,s1|((i==0)<<(w-1)),s2|((i==si[w])<<(w-1)));
v*=p[w];
if(v>n)
break;
}
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void fwtor(int a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
if(f==1)
jia(a[i+j+k],a[j+k]);
else
jian(a[i+j+k],a[j+k]);
}
}
void fwtand(int a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
if(f==1)
jia(a[j+k],a[i+j+k]);
else
jian(a[j+k],a[i+j+k]);
}
}
int main()
{
n=read(),G=read(),L=read(),q=read();
if(L%G)
{
while(q--)
puts("0");
return 0;
}
L/=G,n/=G;
int x=L;
for(int i=2;i*i<=L;i++)
if(x%i==0)
{
p[++tot]=i;
while(x%i==0)
si[tot]++,x/=i;
}
if(x>1)
p[++tot]=x,si[tot]=1;
dfs(1,1,0,0);
int ss=(1<<(tot*2));
for(int i=0;i<ss;i++)
if(s[i])
va[++con]=i,rs[con]=ksm(2,s[i])-1;
f[0][0]=1;
for(int i=1;i<=con;i++)
{
for(int j=0;j<ss;j++)
jia(f[i][va[i]|j],1ll*f[i-1][j]*rs[i]%mod);
for(int j=0;j<ss;j++)
jia(f[i][j],f[i-1][j]);
}
g[con+1][0]=1;
for(int i=con;i>=1;i--)
{
for(int j=0;j<ss;j++)
jia(g[i][va[i]|j],1ll*g[i+1][j]*rs[i]%mod);
for(int j=0;j<ss;j++)
jia(g[i][j],g[i+1][j]);
}
lm=ss;
for(int i=0;i<=con;i++)
fwtor(f[i],1);
for(int i=1;i<=con+1;i++)
fwtor(g[i],1);
for(int i=0;i<=con;i++)
for(int j=0;j<ss;j++)
f[i][j]=1ll*f[i][j]*g[i+2][j]%mod;
for(int i=0;i<=con;i++)
fwtor(f[i],-1),fwtand(f[i],1);
// for(int i=0;i<=con;i++)
// {
// for(int j=0;j<ss;j++)
// cerr<<f[i][j]<<" ";
// cerr<<endl;
// }
while(q--)
{
int x=read(),s=0;
if(x%G||L%(x/G)||(x/G)>n)
{
puts("0");
continue;
}
x/=G;
for(int i=1;i<=tot;i++)
{
int sm=0;
while(x%p[i]==0)
x/=p[i],sm++;
if(sm==0)
s|=(1<<(i-1));
if(sm==si[i])
s|=(1<<(i-1+tot));
}
int w=lower_bound(&va[1],&va[con+1],s)-va-1;//cerr<<w<<endl;
printf("%lld\n",((1ll*f[w][(ss-1)^s]*(rs[w+1]+1)%mod*inv2%mod)+mod)%mod);
}
return 0;
}

bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】的更多相关文章

  1. bzoj 5019 [Snoi2017]遗失的答案

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...

  2. 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)

    [BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...

  3. BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP

    题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...

  4. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  5. bzoj5019: [Snoi2017]遗失的答案

    Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...

  6. [SNOI2017]遗失的答案

    题目 首先\(G,L\)肯定会满足\(G|L\),否则直接全部输出\(0\) 之后我们考虑一下能用到的质因数最多只有\(8\)个 同时我们能选择的数\(x\)肯定是\(L\)的约数,还得是\(G\)的 ...

  7. BZOJ5019 SNOI2017遗失的答案(容斥原理)

    显然存在方案的数一定是L的因数,考虑对其因子预处理答案,O(1)回答. 考虑每个质因子,设其在g中有x个,l中有y个,则要求所有选中的数该质因子个数都在[x,y]中,且存在数的质因子个数为x.y.对于 ...

  8. LOJ2257 SNOI2017 遗失的答案 容斥、高维前缀和

    传送门 数字最小公倍数为\(L\)的充分条件是所有数都是\(L\)的约数,而\(10^8\)内最多约数的数的约数也只有\(768\)个.所以我们先暴力找到所有满足是\(L\)的约数.\(G\)的倍数的 ...

  9. luogu P5366 [SNOI2017]遗失的答案

    luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...

随机推荐

  1. mysqldbcopy 数据库复制工具

    命令参考 mysqldbcopy --source=root:'xxxxxxx'@database s --destination=root:'^%xxxxxz'@databases orange:o ...

  2. Java线程池 ExecutorService

    一.ExecutorService介绍 ExecutorService是Java中对线程池定义的一个接口,它java.util.concurrent包中,在这个接口中定义了和后台任务执行相关的方法:  ...

  3. c/c++中static和extern使用

    c/c++中static和extern使用 在C/C++中static和extern都能够用来修饰函数和变量,可是是有差别的. 内部函数和内部变量:仅仅能在文件内使用的函数和变量. 外部函数和外部变量 ...

  4. HashMap源代码学习笔记

        HashMap的底层主要是基于数组和链表来实现的,它之所以有相当快的查询速度主要是由于它是通过计算散列码来决定存储的位置. HashMap中主要是通过key的hashCode来计算hash值的 ...

  5. Redis HyperLogLog及应用

    参考:http://www.runoob.com/redis/redis-hyperloglog.html Redis 在 2.8.9 之后的版本中,添加了 HyperLogLog 结构,用来做基数统 ...

  6. ios+Appium+Java

    To run iOS tests, you can follow these steps : (Note : I am using Java language here in Eclipse IDE ...

  7. android5.0(Lollipop) BLE Peripheral牛刀小试

    转载请表明作者:http://blog.csdn.net/lansefeiyang08/article/details/46468743 知道Android L对蓝牙对了一些改进.包含加入A2dp s ...

  8. configuration默认设置

    所以 上面的configuration的set可以省略,但是也可以自己改变设置,如下所示:

  9. python安装easy_install和pip

    1 安装easy_install https://pypi.python.org/pypi/setuptools 下载setuptools 执行python setup.py install就安装成功 ...

  10. 通过powershell操作eventlog

    relevant command list ~\Desktop> (Get-Command Write-EventLog).Parameters Key Value --- ----- Warn ...