Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.
Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.
She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).
Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.
The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.
Print the only integer – the maximum total value of all boxes with cakes.
4 1
1 2 2 1
2
In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.
In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.
题意:
给你k个盒子,n个数,将连续的一段数放到盒子里,使得每个盒子不同数个数加起来,总和最大
题解:
设定dp[i][j],在前j个数,分成i块的 最大价值
那么 dp[i][j] = max(dp[i-1][k] + sum[k+1][j])
记录每个位这个数 上一次出现的位置last[i]
更新当前层,先把上一层即 dp[i-1][1~n] 的值更新到线段树,每次相当于加入一个a[j], 与前(j-1)个后缀形成新的 后缀,但是有些后缀的不同个数不会增加
就利用last,使得last[j] ~ j-1 这一段位置 +1,就是当前贡献的答案,最后线段树查询即可
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 5e5+, M = 1e3+,inf = 2e9; int dp[][N],k;
int lazy[N];
int mx[N],v[N],n;
void push_up(int i) {
mx[i] = max(mx[ls],mx[rs]);
}
void push_down(int i,int ll,int rr) {
if(ll == rr) return ;
if(lazy[i]) {
lazy[ls] += lazy[i];
lazy[rs] += lazy[i];
mx[ls] += lazy[i];
mx[rs] += lazy[i];
lazy[i] = ;
}
}
void build(int i,int ll,int rr,int p) {
lazy[i] = ;
mx[i] = ;
v[i] = ;
if(ll == rr) {
v[i] = dp[p][ll-];
mx[i] = v[i];
return ;
}
build(ls,ll,mid,p);
build(rs,mid+,rr,p);
push_up(i);
}
void update(int i,int ll,int rr,int x,int y,int c) {
if(x > y) return ;
push_down(i,ll,rr);
if(ll == x && rr == y) {
mx[i] += c;
lazy[i] += c;
return ;
}
if(y <= mid) update(ls,ll,mid,x,y,c);
else if(x > mid) update(rs,mid+,rr,x,y,c);
else update(ls,ll,mid,x,mid,c),update(rs,mid+,rr,mid+,y,c);
push_up(i);
}
int ask(int i,int ll,int rr,int x,int y)
{
if(x > y) return ;
push_down(i,ll,rr);
if(ll == x && rr == y) {
return mx[i];
}
if(y <= mid) return ask(ls,ll,mid,x,y);
else if(x > mid) return ask(rs,mid+,rr,x,y);
else return max(ask(ls,ll,mid,x,mid),ask(rs,mid+,rr,mid+,y));
push_up(i);
}
int mp[N],last[N],a[N];
int main() { scanf("%d%d",&n,&k);
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
last[i] = mp[a[i]];
mp[a[i]] = i;
}
for(int i = ; i <= k; ++i) {
build(,,n,i-);//(i-1)
for(int j = ; j <= n; ++j) {
update(,,n,max(last[j]+,),j, );
dp[i][j] = ask(,,n,,j);
}
}
cout<<dp[k][n]<<endl;
return ;
}
Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP的更多相关文章
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)
The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)
题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...
- 【动态规划】【线段树】 Codeforces Round #426 (Div. 1) B. The Bakery
给你一个序列,让你划分成K段,每段的价值是其内部权值的种类数,让你最大化所有段的价值之和. 裸dp f(i,j)=max{f(k,j-1)+w(k+1,i)}(0<=k<i) 先枚举j,然 ...
- Codeforces Round #546 (Div. 2) E 推公式 + 线段树
https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
随机推荐
- iOS-runtime-根据协议名调某一个类有与协议里面放的相同的方法
// // ViewController.m // ObserverTrampoline // // Created by Rob Napier on 9/7/11. // Copyright (c) ...
- hadoop2.7.0分布式系统搭建(ubuntu14.04)
因为使用需要,在自己小本上建了四个虚拟机,打算搭建一个1+3的hadoop分布式系统. 环境:hadoop2.7.0+ubuntu14.04 (64位) 首先分别为搭建好的虚拟机的各主机重命名 方法: ...
- POJ 3581 Sequence ——后缀数组 最小表示法
[题目分析] 一见到题目,就有了一个显而易见obviously的想法.只需要每次找到倒过来最小的那一个字符串翻转就可以了. 然而事情并不是这样的,比如说505023这样一个字符串,如果翻转了成为320 ...
- 刷题总结——mayan游戏(NOIP2011提高组day2T3)
题目: 题目背景 NOIP2011提高组 DAY1 试题. 题目描述 Mayan puzzle 是最近流行起来的一个游戏.游戏界面是一个 7 行 5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...
- C\C++ 中的 strcat() 函数 —— 字符串的插入、拼接
转载链接:http://blog.csdn.net/smf0504/article/details/52055971 函数原型 extern char *strcat(char *dest,char ...
- FreeMarker数据模板引擎全面教程mark
http://blog.csdn.net/fhx007/article/details/7902040/#comments 以下内容全部是网上收集: FreeMarker的模板文件并不比HTML页面复 ...
- 看 nova
本节重点介绍 nova-scheduler 的调度机制和实现方法:即解决如何选择在哪个计算节点上启动 instance 的问题. 创建 Instance 时,用户会提出资源需求,例如 CPU.内存.磁 ...
- PHP输出控制函数(ob系列函数)
PHP输出控制函数(ob系列函数) flush — 刷新输出缓冲ob_clean — 清空(擦掉)输出缓冲区ob_end_clean — 清空(擦除)缓冲区并关闭输出缓冲ob_end_flush — ...
- Hive入门及常用指令
基础命令show databases; # 查看某个数据库use 数据库; # 进入某个数据库show tables; # 展示所有表desc 表名; # 显示表结构show partitions 表 ...
- 6.JAVA语言基础部分--数据库操作
操作数据数据流程:得到Connecnt->获取Statement对象->执行sql语句返回ResultSet 1.通过DriverManager.getConnection("j ...