#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#define LL long long
using namespace std;
LL n,m,A[][],p[],pos,d[],r[],len,B[][];
bool vd[]={};
void prime()
{
pos=;
for(int i=;i<;i++)
{
if(!vd[i])
{
if(i>) p[pos++]=i;
for(int j=(i<<);j<;j+=i)
vd[i]=;
}
}
}
void deal(LL k)
{
len=;
for(int i=;i<pos&&k!=;i++)
{
if(k%p[i]==)
{
while(k%p[i]==)
{
d[len++]=p[i];
k/=p[i];
}
}
}
}
LL exp(LL a,LL b,LL mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
void ex_gcd(LL a,LL b,LL &dd,LL &x,LL &y)
{
if(b==)
x=,y=,dd=a;
else
{
ex_gcd(b,a%b,dd,y,x);
y-=x*(a/b);
}
}
LL gauss(LL mod)
{
bool flag=;
LL ans=;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
B[i][j]=A[i][j];
for(int k=;k<n-;k++)
{
LL max_b=B[k][k];int bin=k;
for(int i=k+;i<n;i++)
if(B[i][k]>max_b)
max_b=B[i][k],bin=i;
if(bin!=k)
{
for(int i=k;i<n;i++)
swap(B[bin][i],B[k][i]);
flag^=;
}
if(B[k][k]<)B[k][k]+=mod;
LL Ni,y,dd;
ex_gcd(B[k][k],mod,dd,Ni,y);
Ni%=mod;
if(Ni<)Ni+=mod;
for(int j=k+;j<n;j++)
{
B[k][j]=B[k][j]*Ni%mod;
if(B[k][j]<)B[k][j]+=mod;
for(int i=k+;i<n;i++)
{
B[i][j]=(B[i][j]-(B[k][j]*B[i][k])%mod)%mod;
if(B[i][j]<)B[i][j]+=mod;
}
}
ans*=B[k][k];
ans%=mod;
if(ans<)ans+=mod;
}
ans*=B[n-][n-];
ans%=mod;
if(flag)ans=-ans;
if(ans<)ans+=mod;
return ans;
} LL china_remain()
{
LL a,b,c,c1,c2,x,y,dd,N;
a=d[],c1=r[];
if(c1==)c1=d[];
for(int i=;i<len;i++)
{
b=d[i],c2=r[i];
ex_gcd(a,b,dd,x,y);
c=c2-c1;
LL b1=b/dd;
x=((c/dd*x)%b1+b1)%b1;
c1=a*x+c1;
a=a*b1;
}
return c1%m;
}
int main()
{
prime();
while(cin>>n>>m)
{
deal(m);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
cin>>A[i][j];
if(m==)
{
cout<<<<endl;
continue;
}
for(int i=;i<len;i++)
{
r[i]=gauss(d[i]);
}
cout<<china_remain()<<endl;
}
return ;
}

The Evaluation of Determinant(求行列式mod一个数的值)的更多相关文章

  1. 用php实现斐波那契数列,如: 1, 1, 2, 3, 5, 8, 13, 21, 34。用数组求出第20个数的值。

    <?php //用数组 function fib($n){ $array = array(); $array[0] = 1; $array[1] = 1; for($i=2;$i<$n;$ ...

  2. 用php实现斐波那契数列,如: 1, 1, 2, 3, 5, 8, 13, 21, 34。求出第20个数的值。

    <?php function Fibonacci($n){ if ($n <= 0) { return 0; } elseif ($n == 1) { return 1; } else { ...

  3. SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways no tags  In some countries building highways takes a lot of time... Maybe that's bec ...

  4. C. Learning Languages 求联通块的个数

    C. Learning Languages 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g ...

  5. [LeetCode] Count Complete Tree Nodes 求完全二叉树的节点个数

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  6. 一种快速求fibonacci第n个数的算法

    利用动态规则的思路,摒弃传统的递归做法,可以得到一种快速的求fibonacci第n个数的算法: ''' 求第n(从1开始)位fibonacci数 fibonacci数列前两位为0, 1. 后面每一位数 ...

  7. 【剑指offer】求逆序对的个数

    2013-09-07 10:50:31 面试题36:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字构成一个逆序对.输入一个数组,求出这个数组中逆序对的总数. 小结: 最直观的的方法是: ...

  8. 用递归方法求n阶勒让德多项式的值

    /* Date: 07/03/19 15:40 Description: 用递归法求n阶勒让德多项式的值      { 1  n=0    Pn(x)= { x  n=1      { ((2n-1) ...

  9. 求集合中选一个数与当前值进行位运算的max

    求集合中选一个数与当前值进行位运算的max 这是一个听来的神仙东西. 先确定一下值域把,大概\(2^{16}\),再大点也可以,但是这里就只是写写,所以无所谓啦. 我们先看看如果暴力求怎么做,位运算需 ...

随机推荐

  1. 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys

    题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...

  2. PHP 操作数据库乱码 以及调试

    mysql> show create database pxscj;+----------+--------------------------------------------------- ...

  3. 392 Is Subsequence 判断子序列

    给定字符串 s 和 t ,判断 s 是否为 t 的子序列.你可以认为 s 和 t 中仅包含英文小写字母.字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=10 ...

  4. [ NOI 2002 ] 银河英雄传说

    \(\\\) Description 有 \(n\) 列战场,每一列一开始只有一个战舰,编号就是对应的战场编号. 有 \(m\) 次操作: \(M_{i,j}\) :把 \(i\) 所在的一整列接在 ...

  5. PHP无符号右移与旋转右移

    # PHP 无符号右移 仅用于int形, PHP 的int为32位 # // 右移旋转 function rightRoate($int,$n){ $min = intval(PHP_INT_MAX ...

  6. MySql备份表数据

    一:根据user表创建user_backup表 drop table if exists user_backup; create table user_backup like user; // lik ...

  7. 还是关于编码——decode & encode的探究

    最近被py3.4中的编码折磨的不要不要的,decode & encode的使用.功能貌似在2.7—3.0有一个巨大的变化.网上查询的一些解答很多是基于2.7中的unicode功能,给出的解答是 ...

  8. iOS布局分类

    1.线性布局: 2.集合布局: 3.单元布局: 需要考虑因素: 空间充足.空间不足时内容.尺寸的取舍.

  9. DeepCloneObjects 和 DeepClone

    ARX AcDbDatabase 中的方法 deepCloneObjects() 和 wblock() 区别以及和 AcDbObject 方法 clone() 和 deepClone() 的关系 Ac ...

  10. 梦想CAD控件安卓文字样式

    增加文字样式 用户可以增加文字样式到数据库,并设置其字体等属性,具体实现代码如下: // 增加文字样式 //getCurrentDatabase()返回当前数据库对象 //getTextstyle() ...