#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#define LL long long
using namespace std;
LL n,m,A[][],p[],pos,d[],r[],len,B[][];
bool vd[]={};
void prime()
{
pos=;
for(int i=;i<;i++)
{
if(!vd[i])
{
if(i>) p[pos++]=i;
for(int j=(i<<);j<;j+=i)
vd[i]=;
}
}
}
void deal(LL k)
{
len=;
for(int i=;i<pos&&k!=;i++)
{
if(k%p[i]==)
{
while(k%p[i]==)
{
d[len++]=p[i];
k/=p[i];
}
}
}
}
LL exp(LL a,LL b,LL mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
void ex_gcd(LL a,LL b,LL &dd,LL &x,LL &y)
{
if(b==)
x=,y=,dd=a;
else
{
ex_gcd(b,a%b,dd,y,x);
y-=x*(a/b);
}
}
LL gauss(LL mod)
{
bool flag=;
LL ans=;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
B[i][j]=A[i][j];
for(int k=;k<n-;k++)
{
LL max_b=B[k][k];int bin=k;
for(int i=k+;i<n;i++)
if(B[i][k]>max_b)
max_b=B[i][k],bin=i;
if(bin!=k)
{
for(int i=k;i<n;i++)
swap(B[bin][i],B[k][i]);
flag^=;
}
if(B[k][k]<)B[k][k]+=mod;
LL Ni,y,dd;
ex_gcd(B[k][k],mod,dd,Ni,y);
Ni%=mod;
if(Ni<)Ni+=mod;
for(int j=k+;j<n;j++)
{
B[k][j]=B[k][j]*Ni%mod;
if(B[k][j]<)B[k][j]+=mod;
for(int i=k+;i<n;i++)
{
B[i][j]=(B[i][j]-(B[k][j]*B[i][k])%mod)%mod;
if(B[i][j]<)B[i][j]+=mod;
}
}
ans*=B[k][k];
ans%=mod;
if(ans<)ans+=mod;
}
ans*=B[n-][n-];
ans%=mod;
if(flag)ans=-ans;
if(ans<)ans+=mod;
return ans;
} LL china_remain()
{
LL a,b,c,c1,c2,x,y,dd,N;
a=d[],c1=r[];
if(c1==)c1=d[];
for(int i=;i<len;i++)
{
b=d[i],c2=r[i];
ex_gcd(a,b,dd,x,y);
c=c2-c1;
LL b1=b/dd;
x=((c/dd*x)%b1+b1)%b1;
c1=a*x+c1;
a=a*b1;
}
return c1%m;
}
int main()
{
prime();
while(cin>>n>>m)
{
deal(m);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
cin>>A[i][j];
if(m==)
{
cout<<<<endl;
continue;
}
for(int i=;i<len;i++)
{
r[i]=gauss(d[i]);
}
cout<<china_remain()<<endl;
}
return ;
}

The Evaluation of Determinant(求行列式mod一个数的值)的更多相关文章

  1. 用php实现斐波那契数列,如: 1, 1, 2, 3, 5, 8, 13, 21, 34。用数组求出第20个数的值。

    <?php //用数组 function fib($n){ $array = array(); $array[0] = 1; $array[1] = 1; for($i=2;$i<$n;$ ...

  2. 用php实现斐波那契数列,如: 1, 1, 2, 3, 5, 8, 13, 21, 34。求出第20个数的值。

    <?php function Fibonacci($n){ if ($n <= 0) { return 0; } elseif ($n == 1) { return 1; } else { ...

  3. SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways no tags  In some countries building highways takes a lot of time... Maybe that's bec ...

  4. C. Learning Languages 求联通块的个数

    C. Learning Languages 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g ...

  5. [LeetCode] Count Complete Tree Nodes 求完全二叉树的节点个数

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  6. 一种快速求fibonacci第n个数的算法

    利用动态规则的思路,摒弃传统的递归做法,可以得到一种快速的求fibonacci第n个数的算法: ''' 求第n(从1开始)位fibonacci数 fibonacci数列前两位为0, 1. 后面每一位数 ...

  7. 【剑指offer】求逆序对的个数

    2013-09-07 10:50:31 面试题36:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字构成一个逆序对.输入一个数组,求出这个数组中逆序对的总数. 小结: 最直观的的方法是: ...

  8. 用递归方法求n阶勒让德多项式的值

    /* Date: 07/03/19 15:40 Description: 用递归法求n阶勒让德多项式的值      { 1  n=0    Pn(x)= { x  n=1      { ((2n-1) ...

  9. 求集合中选一个数与当前值进行位运算的max

    求集合中选一个数与当前值进行位运算的max 这是一个听来的神仙东西. 先确定一下值域把,大概\(2^{16}\),再大点也可以,但是这里就只是写写,所以无所谓啦. 我们先看看如果暴力求怎么做,位运算需 ...

随机推荐

  1. [ZJOI2005]沼泽鳄鱼

    题目描述 潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区.每当雨季来临,这里碧波荡漾.生机盎然,引来不少游客. 为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥 ...

  2. 51nod 1166 大数开平方

    1166 大数开平方 基准时间限制:4 秒 空间限制:131072 KB 分值: 320 难度:7级算法题  收藏  关注 给出一个大整数N,求不大于N的平方根的最大整数.例如:N = 8,2 * 2 ...

  3. VMWare虚拟网络编辑

    VMWare虚拟网络编辑记录. 点击"编辑->虚拟网络编辑器" 在网卡列表中选择"VMnet8"查看目前设置,点击右下角的更改设置进行网络修改. 备注:更 ...

  4. Windows Server 2008 R2关闭FTP服务

    公司在ZJ的项目给了一台互联网可以访问的测试服务器,但是只给了三个访问端口,而且还做了映射. 映射信息如下:[1050->3389,1051->50000,1053->21] 其中1 ...

  5. 【SpringMVC框架】非注解的处理器映射器和适配器

    参考来源:     http://blog.csdn.net/acmman/article/details/46968939 处理器映射器就是根据URL来找Handler,处理器适配器就是按照它要求的 ...

  6. C# 传值和传引用 ( ref out in )

    引用类型的变量不直接包含其数据:它包含的是对其数据的引用.当通过值传递引用类型的参数时,有可能更改引用所指向的数据,如某类成员的值(更改属性的值),但是无法更改引用本身的值:也就是说,不能使用相同的引 ...

  7. Redis基础---5个基本数据结构(比较性记忆)

    “ Redis是一个内存数据库,只用硬盘来进行持久化. Mongodb是半内存数据库 Mysql是硬盘数据库 ” 1. Redis启动 安装好了之后.运行redis-3.2.8/src/下的redis ...

  8. 312 Burst Balloons 戳气球

    现有 n 个气球按顺序排成一排,每个气球上标有一个数字,这些数字用数组 nums 表示.现在要求你戳破所有的气球.每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * ...

  9. 关于.Net中Process的使用方法和各种用途汇总(一):Process用法简介

    简介: .Net中Process类功能十分强大.它可以接受程序路径启动程序,接受文件路径使用默认程序打开文件,接受超链接自动使用默认浏览器打开链接,或者打开指定文件夹等等功能. 想要使用Process ...

  10. C:\Windows\System32\drivers\etc\hosts文件显示

     attrib -s -h C:\Windows\System32\drivers\etc\hosts