Codeforces913F. Strongly Connected Tournament
n<=2000个人参加比赛,这样比:(这里的序号没按题目的)1、两两比一场,比完连个图,边i->j表示i赢了j。2、连完那个图强联通分量缩起来,强连通分量内继续比,即强连通分量递归进行1、2,直到每个强连通分量大小为1.i<j时i有a/b的概率赢j,问每个人比赛的场数的总和的期望,答案%998244353。
n个人搞完一次会有大大小小的联通块,就可以递归下去了!但是每次可能分出很多种情况,怎么算呢?选他的一个每种图一定有的强连通分量来枚举即可,那就枚举拓扑序最后的那一个分量,也就是输给了除分量外所有人的那些人组成的,吧!$Ans_i$--i个人答案,$Ans_i=\sum_{j=1}^{i}str_j*cp_{i,j}*(\frac{j(j-1)}{2}+j(i-j)+Ans_i+Ans_{s-i})$,其中$str_i$表示i个点成强连通分量的概率,$cp_{i,j}$表示i个点中j个点输给其他所有人这件事发生的概率。注意到$Ans_i$在$j=i$时会转移到自己,移个项除个系数即可,略。而$str_i=1-\sum_{j=1}^{i-1}str_j*cp_{i,j}$,$cp_{i,j}=cp_{i-1,j-1}p^{i-j}+cp_{i-1,j}(1-p)^j,cp_{i,0}=1$。
#include<string.h>
#include<stdlib.h>
#include<stdio.h>
//#include<assert.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,a,b,p;
#define maxn 2011
const int mod=;
int cp[maxn][maxn],str[maxn],ans[maxn]; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*ans*a%mod;
a=1ll*a*a%mod;
b>>=;
}
return ans;
} int list1p[maxn],listp[maxn];
int main()
{
scanf("%d%d%d",&n,&a,&b); p=1ll*a*powmod(b,mod-)%mod;
cp[][]=;
list1p[]=; for (int i=;i<=n;i++) list1p[i]=list1p[i-]*1ll*(mod+-p)%mod;
listp[]=; for (int i=;i<=n;i++) listp[i]=listp[i-]*1ll*p%mod;
for (int i=;i<=n;i++)
{
cp[i][]=;
for (int j=;j<=i;j++) cp[i][j]=list1p[j]*1ll*cp[i-][j]%mod+listp[i-j]*1ll*cp[i-][j-]%mod,
cp[i][j]-=cp[i][j]>=mod?mod:;
}
str[]=;
for (int i=;i<=n;i++)
{
str[i]=;
for (int j=;j<i;j++) str[i]-=str[j]*1ll*cp[i][j]%mod,str[i]+=str[i]<?mod:;
}
ans[]=ans[]=;
for (int i=;i<=n;i++)
{
ans[i]=(str[i]*1ll*cp[i][i]%mod)*i*(i-)%mod*((mod+)>>)%mod;
for (int j=;j<i;j++) ans[i]+=str[j]*1ll*cp[i][j]%mod*(1ll*j*(j-)%mod*((mod+)>>)%mod
+1ll*j*(i-j)%mod+ans[j]+ans[i-j])%mod,ans[i]-=ans[i]>=mod?mod:;
ans[i]=1ll*ans[i]*powmod(mod+-str[i]*1ll*cp[i][i],mod-)%mod;
}
printf("%d\n",ans[n]);
return ;
}
Codeforces913F. Strongly Connected Tournament的更多相关文章
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- @codeforces - 913F@ Strongly Connected Tournament
目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个选手参加了一场竞赛,这场竞赛的规则如下: 1.一开始,所有 ...
- Strongly Connected Tournament
题解: 有一个很重要的性质就是 对于一张完全强联通图来说 一定有一个强联通分量入度为0(或者出度为0) 然后就一些计数题的基本套路 https://www.cnblogs.com/onioncyc/p ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
随机推荐
- HTML中的那些bug
1.语法检测时提示有多余的结束标签 <!doctype html> <html> <head> <meta charset="utf-8" ...
- linux下安装mysql5.7.21
下载 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.21-linux-glibc2.12-x86_64.tar.gz 解压 ...
- Quartz2D知识点聚合案例
Quartz2D知识点聚合 基本 //画图片 UIImage *image = [UIImage imageNamed:@"阿狸头像"]; [image drawInRect:re ...
- 【C++】异常简述(二):C++的异常处理机制
上文简述了在C语言中异常的处理机制,本文主要讲解C++中的异常处理. 一.异常的语法格式 在C++中,异常的抛出和处理主要使用了以下三个关键字:try. throw . catch.其格式如下: 当我 ...
- laravel学习:模块化caffeinated
# Modules Extract and modularize your code for maintainability. Essentially creates "mini-larav ...
- CREATE FUNCTION - 定义一个新函数
SYNOPSIS CREATE [ OR REPLACE ] FUNCTION name ( [ argtype [, ...] ] ) RETURNS rettype { LANGUAGE lang ...
- ALTER OPERATOR CLASS - 修改一个操作符表的定义
SYNOPSIS ALTER OPERATOR CLASS name USING index_method RENAME TO newname DESCRIPTION 描述 ALTER OPERATO ...
- C#委托与事件的关系(转载)
1.C#中的事件和委托的作用?事件代表一个组件能够被关注的一种信号,比如你的大肠会向你发出想拉屎的信号,你就可以接收到上厕所.委托是可以把一个过程封装成变量进行传递并且执行的对象,比如你上蹲坑和上坐马 ...
- jsencrypt加解密 &&cryptico
npm install --save jsencrypt import {JSEncrypt} from 'jsencrypt'; //导入公钥if ( publicKey.indexOf('---- ...
- Conv1D和Conv2D的区别
我的答案是,在Conv2D输入通道为1的情况下,二者是没有区别或者说是可以相互转化的.首先,二者调用的最后的代码都是后端代码(以TensorFlow为例,在tensorflow_backend.py里 ...