Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9].
Example 2:
nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

详见:https://leetcode.com/problems/longest-increasing-path-in-a-matrix/description/

Java 实现:

dp[i][j] 表示当前i, j 位置能都到的最大距离。
dp[i][j] 是通过dfs 来选的,初始dp[i][j] 都是0, 终止条件是若是走到了一个不是0的位置,那么直接返回dp[x][y]. 可以避免重复计算. 若是dp[x][y]已经有值,说明这个点4个方向的最大值已经找到, 找到dp[x][y]的路径必定是比matrix[x][y]小的,直接返回dp[x][y] 再加上 1 就是之前位置的最大延展长度了。
若是当前位置是0, 就从上下左右四个方向dfs, 若是过了边界或者新位置matrix[x][j] <= 老位置matrix[i][j], 直接跳过continue.
不然len = 1 + dfs. 取四个方向最大的len作为dp[i][j].
Time Complexity: 对于每一个点都做dfs, dfs O(m*n). 所以一共 O(m*n * m*n) = O(m^2 * n^2).
Space: O(m*n).用了dp array.

public class Solution {
final int [][] fourDirs = {{-1, 0}, {1,0}, {0,-1}, {0,1}}; public int longestIncreasingPath(int[][] matrix) {
if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
return 0;
}
int max = 1;
int m = matrix.length;
int n = matrix[0].length;
int [][] dp = new int[m][n];
for(int i = 0; i<m; i++){
for(int j = 0; j<n; j++){
dp[i][j] = dfs(matrix, i, j, dp);
max = Math.max(max, dp[i][j]);
}
}
return max;
} private int dfs(int [][] matrix, int i, int j, int [][] dp){
if(dp[i][j] != 0){
return dp[i][j];
}
int max = 1;
int m = matrix.length;
int n = matrix[0].length;
for(int k = 0; k<fourDirs.length; k++){
int x = i+fourDirs[k][0];
int y = j+fourDirs[k][1];
if(x<0 || x>=m || y<0 || y>=n || matrix[x][y] <= matrix[i][j]){
continue;
}
int len = 1 + dfs(matrix, x, y, dp);
max = Math.max(max, len);
}
dp[i][j] = max;
return dp[i][j];
}
}

C++实现:

class Solution {
public:
vector<vector<int>> dirs = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};
int longestIncreasingPath(vector<vector<int>>& matrix)
{
if (matrix.empty() || matrix[0].empty())
{
return 0;
}
int res = 1, m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
res = max(res, dfs(matrix, dp, i, j));
}
}
return res;
}
int dfs(vector<vector<int>> &matrix, vector<vector<int>> &dp, int i, int j)
{
if (dp[i][j])
{
return dp[i][j];
}
int mx = 1, m = matrix.size(), n = matrix[0].size();
for (auto a : dirs)
{
int x = i + a[0], y = j + a[1];
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j])
{
continue;
}
int len = 1 + dfs(matrix, dp, x, y);
mx = max(mx, len);
}
dp[i][j] = mx;
return mx;
}
};

参考:https://www.cnblogs.com/grandyang/p/5148030.html

329 Longest Increasing Path in a Matrix 矩阵中的最长递增路径的更多相关文章

  1. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  2. Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix)

    Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix) 深度优先搜索的解题详细介绍,点击 给定一个整数矩 ...

  3. Java实现 LeetCode 329 矩阵中的最长递增路径

    329. 矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: ...

  4. Leetcode 329.矩阵中的最长递增路径

    矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: 输入: n ...

  5. LeetCode #329. Longest Increasing Path in a Matrix

    题目 Given an integer matrix, find the length of the longest increasing path. From each cell, you can ...

  6. [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  7. [LeetCode] 329. Longest Increasing Path in a Matrix ☆☆☆

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  8. 329. Longest Increasing Path in a Matrix(核心在于缓存遍历过程中的中间结果)

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  9. 【LeetCode】329. Longest Increasing Path in a Matrix 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/longest- ...

随机推荐

  1. nginx+keepalived+consul 实现高可用集群

    继 负载均衡 之 nginx+consul+consul template,我这次将使用2台虚拟机,来做一个简单的双机负载均衡试验. 试验目标: 1. 当参加负载均衡的子节点服务,有任何其中一个或多个 ...

  2. 【Codeforces 464A】No to Palindromes!

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 因为原序列没有任何长度超过2的回文串. 所以,我们在改变的时候,只要时刻保证改变位置s[i]和s[i-1]以及s[i-2]都不相同就好. 因为 ...

  3. CodeForcesGym 100753K Upside down primes

    Upside down primes Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForc ...

  4. NEU 1351 Goagain and xiaodao's romantic story I

    题目描述 Do you know goagain? If the answer is “no”, well, you can leave NEUACM. Goagain is the most per ...

  5. 最小公倍数LCM

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= ...

  6. POJ2774:Long Long Message

    问两个串的最长公共子串,n<=100000. SAM可以直接搞当然SA哈希都可以..类似于KMP的做法,如果沿parent边走要顺势修改匹配位置. #include<stdio.h> ...

  7. Window-CPU-M Benchmark

    https://downloads.tomsguide.com/CPU-M-Benchmark,0301-48005.html docker FS, DB, ES 很慢,原来是31.26机器又问题,因 ...

  8. Memory+SLES 11/12 OS Tuning & Optimization

    https://www.suse.com/documentation/sles11/book_sle_tuning/data/sec_util_memory.html SLES 11/12 OS Tu ...

  9. php获取代理服务器真实内网IP方法

     功能:获取用户真实IP地址,代理服务器内网IP,防HTTP_CDN_FORWARDED_FOR注入 function getIP() { if (isset($_SERVER["HTTP_ ...

  10. Oracle怎么用(常用工具)

    ​ Oracle数据库管理系统装好了!那要怎么用呢? 将介绍的工具:①Database Configuration Assistant ②SQL Plus ③SQL Developer ​ 一.Dat ...