python照相机模型与增强现实
这次试验主要实现以平面和标记物进行姿态估计以及增强现实的应用。
一、以平面和标记物进行姿态估计
(1)下面演示的是一个简单例子:如何在一副图像上放置一个立方体,原图如下:
(2)先提取两幅JPG图像的SIFT特征,然后使用RANSAC算法稳健地估计单应性矩阵,这两个算法前面的博文都有介绍,代码参考《python计算机视觉编程》,按如下运行一般不会有什么问题。
代码:
# -*- coding: utf-8 -*-
from pylab import *
from PIL import Image
# If you have PCV installed, these imports should work
from PCV.geometry import homography, camera
from PCV.localdescriptors import sift
"""
This is the augmented reality and pose estimation cube example from Section 4.3.
"""
def cube_points(c, wid):
    """ 创建用于绘制立方体的一个点列表(前5个点是底部的正方形,一些边重合了) """
    p = []
    # bottom
    p.append([c[0]-wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]-wid, c[2]-wid]) #same as first to close plot
# top
    p.append([c[0]-wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]-wid, c[2]+wid]) #same as first to close plot
# vertical sides
    p.append([c[0]-wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]-wid])
return array(p).T
def my_calibration(sz):
    """根据自己图像的分辨率修改这个函数中的数值"""
    """
    Calibration function for the camera (iPhone4) used in this example.
    """
    row, col = sz
    fx = 2555*col/2592
    fy = 2586*row/1936
    K = diag([fx, fy, 1])
    K[0, 2] = 0.5*col
    K[1, 2] = 0.5*row
    return K
#计算特征
sift.process_image('image4/book_frontal.JPG', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')
sift.process_image('image4/book_perspective.JPG', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')
# 匹配特征,并计算单应性矩阵
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)
model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)
# 计算照相机标定矩阵
K = my_calibration((747, 1000))
# 位于边长为0.2,z=0平面上的三维点
box = cube_points([0, 0, 0.1], 0.1)
# 投影第一幅图像上底部的正方形
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
# 底部正方形上的点
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))
# 使用H将点变换到第二幅图像中
box_trans = homography.normalize(dot(H,box_cam1))
# 从cam1和H中计算第二个照相机矩阵
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)
# 使用第二个照相机矩阵投影
box_cam2 = cam2.project(homography.make_homog(box))
'''
with open('ar_camera.pkl','r') as f:
    pickle.dump(k,f)
    pickle.dump(dot(linalg.inv(K),cam2.p),f)
'''
#   绘制
im0 = array(Image.open('image4/book_frontal.JPG'))
im1 = array(Image.open('image4/book_perspective.JPG'))
figure()
imshow(im0)
plot(box_cam1[0, :], box_cam1[1, :], linewidth=3)
title('2D projection of bottom square')
axis('off')
figure()
imshow(im1)
plot(box_trans[0, :], box_trans[1, :], linewidth=3)
title('2D projection transfered with H')
axis('off')
figure()
imshow(im1)
plot(box_cam2[0, :], box_cam2[1, :], linewidth=3)
title('3D points projected in second image')
axis('off')
show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
(3)运行结果
可以看到在书的平面上建立起了一个正方体,这三幅实验图的分辨率都是747×1000,若是所用的图片分辨率有所变化,则需要在代码中K = my_calibration((747, 1000))这一部分做相应的修改。
二、增强现实
(1)运行准备
增强现实是将物体和相应信息放置在图像数据上的一系列操作的总称,也就是大家熟悉的AR。在这里我们需要用到两个工具包:PyGame和PyOpenGL。这里给出下载地址:
https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame
在安装这两个工具包之前,先查看一下自己所用的版本信息,下载对应的包的版本,若是版本不对应则会出现is not a supported wheel on this platform这样的报错。
具体操作如下:
1.打开cmd,输入python,则会显示对应版本信息。
2.输入import pip._internal,回车。
3.继续输入print(pip._internal.pep425tags.get_supported()),则会显示相对应的信息。
我这里所使用的是32位的python27版本,也就是说我们所需要安装的包的版本应是如上格式的,在这里我直接在命令行pip install pygame就可以下载,下载下来的就是32位的,若版本是64位的,那么就需要去官网下载pygame‑1.9.4‑cp27‑cp27m‑win_amd64.whl,安装过程很简单,进入所在目录pip就行。
(2)完成包的导入后,我用python脚本开始运行代码,碰到了如下几个问题。
1.opengl的窗口弹出后便闪退了,但是shell里并没有报错,我一开始以为是版本的问题,尝试换了一些版本,但是结果都是一样的,便改用cmd运行,发现出现了如下的报错:
有人提醒这个错误是freeglut和glut共存的缘故,它们俩定义了相同的方法,这个是动态链接库的重叠问题,在我的电脑中需要到C:\Python27\Lib\site-packages\OpenGL\DLLS中删除重复的dll文件,只剩下glut32.vc9.dll这个文件就行。
2.下面第一个错误就是单纯的图片不过关的问题了,这里要注意的是在选用图片时,一定要将分辨率以及代码中的宽高设定就行修改,第二个错误就是因为没有仔细修改代码中对应图片的数据造成的。
(3)运行结果
我先用与上面的相同的图片做了测试,发现能够呈现与书中相同的效果
那么就可以进一步地尝试自己拍摄的图片,选用测试图片如下:
1.失败结果
这两张图的结果显示就是上面所说的图片数据没有改好,代码中的宽高要根据你所用的图片来设定,若是不一致则可能出现上面这样成功率为0的情况。
2.成功结果
上面这组所选用的图片分辨率为1080×1440,我的电脑的分辨率为1366×768,所以高度上显示不完全,但是不怎么影响实验结果。若是想要显示完全,还需要调整自己的图片和代码,将其改成1000×747,调整后结果如下:
(4)代码
import math
import pickle
from pylab import *
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import pygame, pygame.image 
from pygame.locals import *
from PCV.geometry import homography, camera
from PCV.localdescriptors import sift
def cube_points(c, wid):
    """ Creates a list of points for plotting
        a cube with plot. (the first 5 points are
        the bottom square, some sides repeated). """
    p = []
    # bottom
    p.append([c[0]-wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]-wid, c[2]-wid]) #same as first to close plot
# top
    p.append([c[0]-wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]-wid, c[2]+wid]) #same as first to close plot
# vertical sides
    p.append([c[0]-wid, c[1]-wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]+wid])
    p.append([c[0]-wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]+wid])
    p.append([c[0]+wid, c[1]-wid, c[2]-wid])
return array(p).T
def my_calibration(sz):
    row, col = sz
    fx = 2555*col/2592
    fy = 2586*row/1936
    K = diag([fx, fy, 1])
    K[0, 2] = 0.5*col
    K[1, 2] = 0.5*row
    return K
def set_projection_from_camera(K): 
	glMatrixMode(GL_PROJECTION) 
	glLoadIdentity()
	fx = K[0,0] 
	fy = K[1,1] 
	fovy = 2*math.atan(0.5*height/fy)*180/math.pi 
	aspect = (width*fy)/(height*fx)
	near = 0.1 
	far = 100.0
	gluPerspective(fovy,aspect,near,far) 
	glViewport(0,0,width,height)
def set_modelview_from_camera(Rt): 
	glMatrixMode(GL_MODELVIEW) 
	glLoadIdentity()
	Rx = np.array([[1,0,0],[0,0,-1],[0,1,0]])
	R = Rt[:,:3] 
	U,S,V = np.linalg.svd(R) 
	R = np.dot(U,V) 
	R[0,:] = -R[0,:]
	t = Rt[:,3]
	M = np.eye(4) 
	M[:3,:3] = np.dot(R,Rx) 
	M[:3,3] = t
	M = M.T
	m = M.flatten()
	glLoadMatrixf(m)
def draw_background(imname):
	bg_image = pygame.image.load(imname).convert() 
	bg_data = pygame.image.tostring(bg_image,"RGBX",1)
	glMatrixMode(GL_MODELVIEW) 
	glLoadIdentity()
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
	glEnable(GL_TEXTURE_2D) 
	glBindTexture(GL_TEXTURE_2D,glGenTextures(1)) 
	glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,bg_data) 
	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST) 
	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST)
	glBegin(GL_QUADS) 
	glTexCoord2f(0.0,0.0); glVertex3f(-1.0,-1.0,-1.0) 
	glTexCoord2f(1.0,0.0); glVertex3f( 1.0,-1.0,-1.0) 
	glTexCoord2f(1.0,1.0); glVertex3f( 1.0, 1.0,-1.0) 
	glTexCoord2f(0.0,1.0); glVertex3f(-1.0, 1.0,-1.0) 
	glEnd()
	glDeleteTextures(1)
def draw_teapot(size):
	glEnable(GL_LIGHTING) 
	glEnable(GL_LIGHT0) 
	glEnable(GL_DEPTH_TEST) 
	glClear(GL_DEPTH_BUFFER_BIT)
	glMaterialfv(GL_FRONT,GL_AMBIENT,[0,0,0,0]) 
	glMaterialfv(GL_FRONT,GL_DIFFUSE,[0.5,0.0,0.0,0.0]) 
	glMaterialfv(GL_FRONT,GL_SPECULAR,[0.7,0.6,0.6,0.0]) 
	glMaterialf(GL_FRONT,GL_SHININESS,0.25*128.0) 
	glutSolidTeapot(size)
width,height = 1000,747 #根据图片修改
def setup():
	pygame.init() 
	pygame.display.set_mode((width,height),OPENGL | DOUBLEBUF) 
	pygame.display.set_caption("OpenGL AR demo")
# compute features
sift.process_image('python6.jpg', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')
sift.process_image('python7.jpg', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')
# match features and estimate homography
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)
model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)
K = my_calibration((747, 1000))
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
box = cube_points([0, 0, 0.1], 0.1)
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))
box_trans = homography.normalize(dot(H,box_cam1))
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)
Rt=dot(linalg.inv(K),cam2.P)
setup() 
draw_background("python7.bmp") 
set_projection_from_camera(K) 
set_modelview_from_camera(Rt)
draw_teapot(0.05)
pygame.display.flip()
while True: 
  for event in pygame.event.get(http://www.my516.com):
    if event.type == pygame.QUIT:
       sys.exit()
       pygame.quit()
pygame.display.flip()
---------------------
python照相机模型与增强现实的更多相关文章
- OpenGL边用边学------2 经典照相机模型
		https://blog.csdn.net/smstong/article/details/50290327 实际照相步骤 1 布置场景和调整照相机位置 3 选择镜头对焦Focus 4 按下快门 5 ... 
- python sklearn模型的保存
		使用python的机器学习包sklearn的时候,如果训练集是固定的,我们往往想要将一次训练的模型结果保存起来,以便下一次使用,这样能够避免每次运行时都要重新训练模型时的麻烦. 在python里面,有 ... 
- python django模型内部类meta详细解释
		Django 模型类的Meta是一个内部类,它用于定义一些Django模型类的行为特性.下面对此作一总结: abstract 这个属性是定义当前的模型类是不是一个抽象类.所谓抽象类是不会相应 ... 
- Python Select模型(程序流程)(转)
		缘由 之前写socket的CS模型代码,都是利用最原始的多线程方式.服务端是主线程,接到客户端的连接请求就从线程池中获取一个线程去处理整个socket连接的所有操作,虽然在连接数较短的情况下没有什么影 ... 
- 玩转python主题模型程序库gensim
		gensim是python下一个极易上手的主题模型程序库(topic model),网址在:http://radimrehurek.com/gensim/index.html 安装过程较为繁琐,参考h ... 
- 用PMML实现python机器学习模型的跨平台上线
		python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ... 
- Python 存储模型
		1.Python彻底分离了对象和引用,可以认为内存中的对象都是不可修改的,每次修改引用,相当于在堆上重新创建一个对象,引用指向新对象. 2.对于数值和字符串,修改意味着引用指向一个新对象. 3.集合中 ... 
- Python IO模型
		这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ... 
- python 编程模型
		数据模型(译) image.png 1 对象(object).类型(type)和值(value) python中所有的数据都是通过对象(object)或者对象之间的关系来表示 每个对象(objec ... 
随机推荐
- npm学习笔记
			NPM是随同NodeJS一起安装的包管理工具,能解决NodeJS代码部署上的很多问题,常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从NPM服务器下载并 ... 
- mysql 系统函数
			SELECT VERSION() -- 获取 mysql版本号 SELECT CONNECTION_ID() -- 查看服务启动后 用户的连接次数 SELECT DATABASE(),SCHEMA() ... 
- Lightoj 1003 - Drunk(拓扑排序)
			One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ... 
- camera摄像原理之四:曝光和GAMMA
			GAMMA:输出/输入(光信号值) 从最明亮到最黑暗,假设人眼能够看到一定的范围,那么胶片(或CCD 等电子感光器件)所能表现的远比人眼看到的范围小的多,而这个有限的范围就是感光宽容度. 人眼的感光宽 ... 
- 基于TCP的字符串传输程序
			---恢复内容开始--- LINUX中的网络编程是通过SOCKET接口来进行的. Socket(套接字) Socket相当于进行网络通信两端的插座,只要对方的Socket和自己的Socket有通信联接 ... 
- 使用C#开发HTTP服务器系列之实现Get和Post
			各位朋友大家好,我是秦元培,欢迎大家关注我的博客,我的博客地址是http://qinyuanpei.com.在我们这个Web服务器有了一个基本的门面以后,我们是时候来用它做点实际的事情了.还记得我们 ... 
- 谁动了我的cpu——oprofile使用札记
			引言 cpu无端占用高?应用程序响应慢?苦于没有分析的工具? oprofile利用cpu硬件层面提供的性能计数器(performance counter),通过计数采样,帮助我们从进程.函数.代码层面 ... 
- Python3列表、元组、字典、集合的方法
			一.列表 温馨提示:对图片点右键——在新标签页中打开图片: 1.count() 定义:统计指定元素在列表中出现的次数并返回这个数.若指定的元素不存在则返回:0. 格式:[列表].count(“指定元素 ... 
- bzoj1756
			1756: Vijos1083 小白逛公园 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1150 Solved: 371[Submit][Statu ... 
- CodeForces 722A Broken Clock (水题)
			题意:给定一个时间,然后改最少的数字,使得它成为12进制或者24进制. 析:24进制主要判是不是大于23,如果是把第一位变成0,12进制判是不是大于12,如果是再看第二位是不是0,是0,第一位变成1, ... 
