1.在ssd/caffe/data下创建VOC2007的目录,将ssd/caffe/data/VOC0712里的create_data.sh、create_list.sh和labelmap_voc.prototxt拷贝到VOC2007下,得如下图:

2.在/home/bnrc下创建data目录,在data目录下创建VOCdevkit2007目录,直接把VOC2007整个数据的文件夹放在VOCdevkit2007目录下,结构如图:

VOC2007文件夹所包含的目录:

3.在ssd/caffe/examples目录下,创建VOC2007文件夹,这个文件夹之后要存储生成的lmdb数据

4.修改labelmap_voc.prototxt成你自己的格式:

运行create_list.sh:./create_list.sh,报以下错误:

因为我的data目录下是VOCdevkit2007,所以需要修改create_list.sh中的root_dir=$HOME/data/VOCdevkit/为root_dir=$HOME/data/VOCdevkit2007/

修改之后依旧报以下错:

这是因为/data/VOCdevkit2007下只有VOC2007,没有2012,所以需要把for name in VOC2007 VOC2012中的VOC2012删除

修改之后报以下错误:

这是还没有编译ssd这个目录的原因

之后再运行create_data.sh :./create_data.sh,报以下错误:

需要将create_data.sh中的data_root_dir="$HOME/data/VOCdevkit"改为data_root_dir="$HOME/data/VOCdevkit2007",将dataset_name="VOC0712"改为dataset_name="VOC2007"

再运行报以下错误:

用export PYTHONPATH=/home/bnrc/ssd/caffe/python修改PYTHONPATH

修改之后又报错:

这是因为我之前只在ssd/caffe进行make,没有make pycaffe

make pycaffe的显示:

可以看到,生成了_caffe

再运行就能正确在./examples/VOC2007下生成lmdb数据了

5.修改ssd_pascal.py代码:

自己的是VOC2007

model_name修改为VOC2007

save_dir修改为VOC2007

snapshot_dir修改为VOC2007

job_dir修改为VOC2007

output_result_dir在/data前加/home/bnrc

name_size_file修改为VOC2007

label_map_file修改为VOC2007

num_classes修改为2

gpu可以根据需要选择

6.训练数据:python ./examples/ssd/ssd_pascal.py

ssd训练自己的数据集的更多相关文章

  1. SSD框架训练自己的数据集

    SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...

  2. 目标检测算法SSD之训练自己的数据集

    目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ...

  3. 目标检测算法SSD在window环境下GPU配置训练自己的数据集

    由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数 ...

  4. 【Tensorflow系列】使用Inception_resnet_v2训练自己的数据集并用Tensorboard监控

    [写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inceptio ...

  5. 可变卷积Deforable ConvNet 迁移训练自己的数据集 MXNet框架 GPU版

    [引言] 最近在用可变卷积的rfcn 模型迁移训练自己的数据集, MSRA官方使用的MXNet框架 环境搭建及配置:http://www.cnblogs.com/andre-ma/p/8867031. ...

  6. caffe训练自己的数据集

    默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直 ...

  7. 使用yolo3模型训练自己的数据集

    使用yolo3模型训练自己的数据集 本项目地址:https://github.com/Cw-zero/Retrain-yolo3 一.运行环境 1. Ubuntu16.04. 2. TensorFlo ...

  8. Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)

    在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...

  9. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

随机推荐

  1. ssh远程连接docker中linux(ubuntu/centos)

    ssh远程连接docker中linux(ubuntu/centos) https://www.jianshu.com/p/9e4d50ddc57e centos docker pull centos: ...

  2. 更改Identity用户信息

    1.用当前上下文对象初始化为一个一个UserStote 对象,然后使用 userstore对象 初始化一个UserManagement对象.找到这个对象,然后更新它的部分属性.然后调用 manager ...

  3. 使用FFMPEG从MP4封装中提取视频流到.264文件 (转载)

    命令行: ffmpeg -i 20130312_133313.mp4 -codec copy -bsf: h264_mp4toannexb -f h264 20130312_133313.264 说明 ...

  4. Linux的gnu c下itoa的代替函数用sprintf(转载)

    转自:http://www.linuxidc.com/Linux/2011-01/31600.htm int number = 12345; char string[25]; // itoa(numb ...

  5. 线程Coroutines 和 Yield(转)

    之前一直很纠结这个问题,在网上找到了这篇文章,给大家分享下: 第一种方法:    void Start()     {         print("Starting " + Ti ...

  6. [hdu4089] Activation【概率dp 数学期望】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4089 本来可以一遍过的,结果mle了一发...注意要用滚动数组. 令f(i, j)表示队列剩余i个人,这 ...

  7. 菜鸡CodeFoces打卡单

    2017.12.13 1:05 签到3题 Educational Codeforces Round 34 (Rated for Div. 2) 补题:

  8. windows下Python的安装,以及IDLE的使用

    一.Python的下载安装 (1)python的windows安装包可以从https://www.python.org 网址中下载,可以下载3.4版本的或者2.7版本的.(2)下载后直接运行即可.然后 ...

  9. Neither BindingResult nor plain target object for bean name 'user' available as request attribute

    这个异常是因为jsp页面写错了. 把<form:form></form:form>标签改成普通的标签即可. 应该是第一次访问的时候,user是空的.但springmvc不能是空 ...

  10. 轻松搞懂Java中的自旋锁

    前言 在之前的文章<一文彻底搞懂面试中常问的各种“锁”>中介绍了Java中的各种“锁”,可能对于不是很了解这些概念的同学来说会觉得有点绕,所以我决定拆分出来,逐步详细的介绍一下这些锁的来龙 ...