51nod 1119 机器人走方格 V2
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
输出走法的数量 Mod 10^9 + 7。
2 3
3
C(n - 1 + m - 1, n - 1)
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int mod = 1e9 + 7;
typedef long long ll;
// 返回d = gcd(a,b); 和对应于等式ax + by = d中的x,y
ll extend_gcd(ll a, ll b, ll &x, ll &y)
{
if (a == 0 && b == 0)
{
return -1; // 无最大公约数
}
if (b == 0)
{
x = 1;
y = 0;
return a;
}
ll d = extend_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
// 求逆元素
// ax = 1(mod n)
ll mod_reverse(ll a, ll n)
{
ll x, y;
ll d = extend_gcd(a, n, x, y);
if (d == 1)
{
return (x % n + n) % n;
}
else
{
return -1;
}
}
ll c(ll m, ll n)
{
ll i, t_1, t_2;
t_1 = t_2 = 1;
for (i = n; i >= n - m + 1; i--)
{
t_1 = t_1 * i % mod;
}
for (i = 1; i <= m; i++)
{
t_2 = t_2 * i % mod;
}
return t_1 * mod_reverse(t_2, mod) % mod; // 转换为逆元
}
int main()
{
ll n, m, ans;
cin >> m >> n;
ans = c(min(m - 1, n - 1), m + n - 2);
cout << ans << endl;
return 0;
}
51nod 1119 机器人走方格 V2的更多相关文章
- 51nod 1119 机器人走方格 V2 【组合数学】
挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- 1119 机器人走方格 V2(组合)
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...
- 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)
题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...
- 1119 机器人走方格 V2
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...
- 1119 机器人走方格 V2 (组合数学)
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开 ...
- 51nod1119 机器人走方格 V2
终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...
- 51nod 1120 机器人走方格V3
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...
- 51Nod——N1118 机器人走方格
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
随机推荐
- 拷贝地图 CopyAndOverwriteMap()
private void CopyAndOverwriteMap() { //Get IObjectCopy interface IObjectCopy objectCopy = new Object ...
- ln 软连接 & 硬连接
创建软连接的方式 #ln -s soure /file object 创建软连接是连接文件本身,可以跨分区建立软连接,不会应为不同分区而出现不能使用的问题. 在创建软连接的文件中,修改一处文件另一处同 ...
- [Analytics] Add Tealium debugger in Chrome
It would be helpful once you can see what information have been tracking inside you web application, ...
- Linux如何更新软件源
Linux软件源的设置方法 1 打开数据源配置文件 vi /etc/apt/sources.list 添加相关的数据源,可以选择以下的数据源,不要写太多,否则会影响更新速度. 之后使用ap ...
- Office WORD里插入图片,嵌入型只能显示一半怎么办
如下图所示,公式编辑器插入的图片如果用嵌入型只能显示一半,但是改成其他方式即可全部显示 选中有问题的段落,点击设置为单倍行距即可
- 【独立开发人员er Cocos2d-x实战 008】BMFont生成位图字体工具和Cocos2dx使用载入fnt文件
1.首先我们须要下载而且安装BMFont工具,下载地址例如以下:http://download.csdn.net/detail/chenqiai0/8899353(里面还有具体的使用文档,假设使用中有 ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- python和python3
1 安装python和python3的方法 如果是python,那么直接python setup.py install; 如果是python3,那么直接python3 setup.py install ...
- ibatis和mybatis的区别
区别1:全局配置文件(sqlMapConfig.xml)的差异 主要是元素标签命名的差异,比如mybatis的根元素标签为<configuration>,ibatis的 根元素标签为< ...
- Jquery与Dom对象相互转化
Jquery与Dom对象相互转化 jQurey对象和DOM对象的相互转换 在讨论jQurey对象和DOM对象的相互转换之前,我们先约定定义变量的风格.如果我们获取的对象是jQuery对象,那么我们 ...