Portal

Description

进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} [gcd(i,j)=d]\)。

Solution

莫比乌斯反演入门题。

设\(calc(n,m)\)表示\(i\in[1,n],j\in[1,m]\)且\(gcd(i,j)=d\)的数对\((i,j)\)的个数。那么简单地进行容斥,可知\(ans=calc(x_2,y_2)-calc(x_1-1,y_2)-calc(x_2,y_1-1)+calc(x_1-1,x_2-1)\)。

于是考虑如何计算\(calc(n,m)\)。

\[f(d) = \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d]
\]

\[\begin{align*}
F(x) &= \sum_{x|d} f(d) \\
&= \sum_{x|d} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \\
&= \sum_{k=1}^{⌊\frac{n}{x}⌋} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=kx] \\
&= ⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋
\end{align*}$$ $gcd(i,j)=kx \Leftrightarrow x|i$且$x|j$,那满足条件的$(i,j)$就有$⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋$对。再进行莫比乌斯反演:
$$ f(x)= \sum_{x|d} \mu(\frac{d}{x}) F(d) = \sum_{x|d} \mu(\frac{d}{x})⌊\frac{n}{d}⌋⌊\frac{m}{d}⌋ = \sum_{k=1}^{⌊\frac{n}{x}⌋} \mu(k)⌊\frac{n}{kx}⌋⌊\frac{m}{kx}⌋ $$这个做法看起来是$O(\dfrac{n}{x})$的。不过由于$⌊\dfrac{n}{i}⌋$最多只有$\sqrt n$种取值,所以我们可以以$O(\sqrt n)$的复杂度进行计算。

|i| 1| 2| 3|4|5|6|7|8|9|10|11|12|13|14|15|
|-|-|-|-|-|-|-|-|-|-|--|--|--|--|--|--|
|15/i|15|7|5|3|3|2|2|1|1|1|1|1|1|1|1|

观察发现,一个取值为$v$的区间是以$⌊\frac{n}{v}⌋$结尾的,下一个区间是从$⌊\frac{n}{v}⌋+1$开始的,模拟这一性质去计算即可。若对于区间$k\in[L,R]$有$⌊\frac{n}{kx}⌋=v_1,⌊\frac{m}{kx}⌋=v_2$,那么该区间对答案的贡献为$v_1v_2\sum_{k=L}^R \mu(k)$,预处理出$\mu(x)$的前缀和即可。
> 时间复杂度$O(T\sqrt {10^5})$。

##Code
```cpp
//[HAOI2011]Problem b
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=5e4+10;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void getMu(int n)
{
mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!notP[i]) pr[++cntP]=i,mu[i]=-1;
for(int j=1;j<=cntP;j++)
{
if((lint)i*pr[j]>n) break;
int x=i*pr[j]; notP[x]=true;
if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}
}
}
for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int k;
lint calc(int x,int y)
{
x/=k,y/=k; if(x>y) swap(x,y);
lint res=0;
for(int L=1,R;L<=x;L=R+1)
{
int v1=x/L,v2=y/L; R=min(x/v1,y/v2);
res+=1LL*(pre[R]-pre[L-1])*v1*v2;
}
return res;
}
int main()
{
getMu(5e4);
int Q=read();
while(Q--)
{
int fr1=read(),to1=read(),fr2=read(),to2=read(); k=read();
printf("%lld\n",calc(to1,to2)-calc(fr1-1,to2)-calc(to1,fr2-1)+calc(fr1-1,fr2-1));
}
return 0;
}
```
##P.S.
同样的题[洛谷P2257](https://www.luogu.org/problemnew/show/P2257)。\]

洛谷P2522 - [HAOI2011]Problem b的更多相关文章

  1. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...

  2. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

  3. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  4. 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  5. 洛谷 P2523 [HAOI2011]Problem c

    洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...

  6. 洛谷P2523 [HAOI2011]Problem c(计数dp)

    题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...

  7. 洛谷 P2519 [HAOI2011]problem a

    传送门 考虑转化为求最多说真话的人数 设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j ...

  8. 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...

  9. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

随机推荐

  1. 更改shell

    chsh -s /usr/local/bin/bash  #更改自己的shell为bash

  2. Azure 项目构建 – 托管静态网站

    本课程主要介绍了如何在 Azure 平台上快速构建和部署基于 Azure Web 应用的静态托管网站, 实践讲解如何使用 Azure 门户创建 Web 应用, 部署静态网站源代码,设置自定义域名等. ...

  3. sql server Cannot resolve the collation conflict between "Chinese_PRC_BIN" and "Chinese_PRC_CI_AS" in the equal to operation

    今天查询二个db,出现这个错误,二种方法,一种是把db里的collation改成一样的:如果不方便可以直接在sql语句后面转一下: select * from table where crm_mscr ...

  4. npm scripts的生命周期管理

    我们平时阅读一些开源项目,可能会发现有些项目的package.json里的scripts区域定义的脚本很复杂,令人眼花缭乱. 其实这些脚本是有规律可循的.让我们从最简单的一个例子开始学习. 新建一个空 ...

  5. iOS 查看包架构信息

    lipo -info libUMSocial_Sdk_4.2.a 查看包架构信息

  6. 远程文件拷贝(fastcopy为例)

    远程地址格式如下:\\IP地址\磁盘符号$\文件夹名称(如:127.0.0.1\\c$\\image)拷贝了image文件夹下面的所有文件,但是如果远程机器有密码的话要先在本机先输入远程的目标地址然后 ...

  7. UESTC cdoj 619 吴神,人类的希望 (组合数学)

    枚举盒子的个数,先把总数n减去掉box*k保证每个盒子至少有k个小球,剩下的小球放入盒子中可以为空, 加入box个小球保证每个盒子至少有一个小球,问题转化成不可区分小球放入不可区分盒子非空的方案数. ...

  8. HDU 6166 Senior Pan(多校第九场 二进制分组最短路)

    题意:给出n个点和m条有向边(有向边!!!!我还以为是无向查了半天),然后给出K个点,问这k个点中最近的两点的距离 思路:比赛时以为有询问,就直接丢了,然后这题感觉思路很棒,加入把所有点分成起点和终点 ...

  9. Vue v-if与v-show的区别

    用了 viewjs  预览图片的时候 发现 用着两个 还是有区别的, 相同点==== v-if与v-show都可以动态控制dom元素显示隐藏 不同点 = ====v-if显示隐藏是将dom元素整个添加 ...

  10. 多线程threadvar 变量设定

    Delphi管理多线程之线程局部存储:threadvar 尽管多线程能够解决许多问题,但是同时它又给我们带来了很多的问题.其中主要的问题就是:对全局变量或句柄这样的全局资源如何访问?另外,当必须确保一 ...