Description

某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。

Input

输入文件中仅有一行,包含两个整数n和m,表示城市街区的规模。

 

Output

输出文件中仅有一个整数和一个换行/回车符,表示不同的方案总数。

 

Sample Input

6 6

Sample Output

132

HINT

100%的数据中,1 <= m <= n <= 5 000
思路:和上上上一场BC相同,甚至还比那题简单,可以知道答案是(n-m+1)/(n+1)*C(n,n+m)
 
 n,m=map(int , raw_input().split())
up = 1
down = 1
u = n + m
for i in range(u - m + 1 ,u+1):
up = up * i
for i in range(1,m+1):
down = down * i
C = up / down
C = C * (n - m + 1) / (n+1)
print C

BZOJ 3907: 网格【组合数学】的更多相关文章

  1. bzoj 3907: 网格 组合数学

    3907: 网格 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 13  Solved: 7[Submit][Status][Discuss] Descr ...

  2. BZOJ 3907: 网格( 组合数 + 高精度 )

    (0,0)->(n,m)方案数为C(n,n+m), 然后减去不合法的方案. 作(n,m)关于y=x+1的对称点(m-1,n+1), 则(0,0)->(m-1,n+1)的任意一条路径都对应( ...

  3. BZOJ 3907: 网格 [Catalan数 高精度]

    3907: 网格 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 180[Submit][Status][Discuss] De ...

  4. BZOJ 3907: 网格

    Description 求不跨过直线 \(y=x\) ,到达 \((n,m)\) 的方案数. Sol 组合数学+高精度. 这个推导过程跟 \(Catalan\) 数是一样的. 答案就是 \(C^{n+ ...

  5. bzoj 3907 网格 bzoj2822 [AHOI2012]树屋阶梯——卡特兰数(阶乘高精度模板)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 https://www.lydsy.com/JudgeOnline/problem.p ...

  6. 【BZOJ 3907】网格 组合数学

    大家说他是卡特兰数,其实也不为过,一开始只是用卡特兰数来推这道题,一直没有怼出来,后来发现其实卡特兰数只不过是一种组合数学,我们可以退一步直接用组合数学来解决,这道题运用组合数的思想主要用到补集与几何 ...

  7. 【BZOJ 3907】网格(Catalan数)

    题目链接 这个题推导公式跟\(Catalan\)数是一样的,可得解为\(C_{n+m}^n-C_{n+m}^{n+1}\) 然后套组合数公式\(C_n^m=\frac{n!}{m!(n-m)!}\) ...

  8. BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]

    3997: [TJOI2015]组合数学 题意:\(n*m:\ n \le 1000\)网格图,每个格子有权值.每次从左上角出发,只能向下或右走.经过一个格子权值-1.至少从左上角出发几次所有权值为0 ...

  9. BZOJ 3997 [TJOI2015]组合数学(单调DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3997 [题目大意] 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右 ...

随机推荐

  1. /etc/default/useradd

    系统默认的shell在,/etc/default/useradd 中,添加用户的时候如果不指定shell,默认的shell就是该文件下制定的文件

  2. Azure 项目构建 – 部署 Drupal 网站

    通过完整流程详细介绍了如何通过 Azure Web 应用. MySQL DB on Azure 等服务在 Azure 平台上快速搭建 Drupal 服务器,并将其连接到 MySQL 数据库. 此系列的 ...

  3. UVALive 4080 Warfare And Logistics (最短路树)

    很多的边会被删掉,需要排除一些干扰进行优化. 和UVA - 1279 Asteroid Rangers类似,本题最关键的地方在于,对于一个单源的最短路径来说,如果最短路树上的边没有改变的话,那么最短路 ...

  4. nginx “403 Forbidden” 错误 解决方法

    错误的原因是缺少index.html或者index.php文件,就是配置文件中index index.html index.htm这行中的指定的文件 只需要配置时加一句  index  index.h ...

  5. DaemonSet 案例分析

    本节详细分析两个 k8s 自己的 DaemonSet:kube-flannel-ds 和 kube-proxy . kube-flannel-ds 下面我们通过分析 kube-flannel-ds 来 ...

  6. Mac如何让调整窗口大小更简单

    在使用Mac的时候,你能把鼠标的光标悬停在任何程序的边缘,当光标自动变成箭头样式后,按住鼠标左键你将能随意拖动来改变程序窗口的大小.但是,这里有个问题,我们有时候很难控制把鼠标光标移动在正确的窗口边缘 ...

  7. php微信开发自动回复一直提示“该公众号提供的服务出现故障,请稍后再试”

    坑:服务器可以接受到发到公众号的信息,但是公众号不能回复,直接echo " ";exit();也会提示“该公众号提供的服务出现故障,请稍后再试”: 可能原因:用的php,是把数组转 ...

  8. PAT (Advanced Level) Practise - 1098. Insertion or Heap Sort (25)

    http://www.patest.cn/contests/pat-a-practise/1098 According to Wikipedia: Insertion sort iterates, c ...

  9. Oracle旗下软件官网下载速度过慢解决办法

    平常下载Oracle旗下软件官网的产品资源,会发现速度很慢,如下载JDK和mysql时, 这样很浪费我们的时间 解决办法: 复制自己需要下载的资源链接 使用迅雷下载该资源 速度均很快 如下载Mysql ...

  10. shell脚本,awk常见初始化变量的题目。

    文件 内容如下 clone=line1gb=line1gi=line1lib=line1gb=line2gi=line2lib=line2clone=line3gb=line3gi=line3lib= ...