斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时6
课时6 线性分类器损失函数与最优化(上)
多类SVM损失:这是一个两分类支持向量机的泛化
SVM损失计算了所有不正确的例子,将所有不正确的类别的评分,与正确类别的评分之差加1,将得到的数值与0作比较,取两者中的最大值。然后将所有的数值进行求和。用平均值来代替不会影响结果。
这些评分都是无标度的,因为我们可以随便选择W,让它成比例地增大或者减小,然后分数也随之成比例地变化。所以分数的大小和它的量度的选择紧密相关,将安全系数的值设为1在某种程度上来说只是一个随意的选择。
在实际的数据集中使用这个损失函数,可能会有一些我们不太希望的性质。我们现在有整个W空间,并且根据这个损失函数他们的工作方式都是相同的,我们希望对于所有W而言有一部分的W是有优先权的,这一优先权基于我们希望W拥有的特点,不用去管数据集,只关心使W达到最优的特点。
正则化
可以用它来处理我们的损失函数,加上了一项正则化函数R(W),而R(W)衡量了W的好坏,我们不仅仅想要数据拟合得更好,也希望能优化W,所以我们找到了一些方法来证明他们是确实有效的,事实上,正则化是为了权衡你的训练损失和你用于测试集的泛化损失,所以正则化是一系列通过损失来使目标相加的技术。
L2正则化要做的就是尽可能地展开w权重,以便于考虑到所有输入特征或者说所有的像素,并且尽可能地利用这些维度
为什么要用正则化?
假设你有多组权重可以得到相同分数,我们想以某种方式选出最好的。
Softmax分类器
也就是一般化的逻辑斯蒂回归,他是在这些分数的基础上表明损失的一种不同的函数形式,这种解释就是说他是在这些分数基础上实现的,这些分数不是随机的,也不是表明某种边界。从一个问题出发,我们有特定的解读方式,这种方式有一定的规则,这些分数是对应不同类未经标准化的对数概率。
斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时6的更多相关文章
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时3
课时3 计算机视觉历史回顾与介绍下 ImageNet有5000万张图片,全部都是人工清洗过得,标注了超过2万个分类. CS231n将聚焦于视觉识别问题,图像分类关注的是大图整体:物体检测告诉你东西具体 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时1
课时1 计算机视觉历史回顾与介绍上 CS231n:这一一门关于计算机视觉的课程,基于一种专用的模型架构,叫做神经网络(更细一点说,是卷积神经网络CNN).计算机视觉是人工智能领域中发展最为迅猛的一个分 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时26&&27
课时26 图像分割与注意力模型(上) 语义分割:我们有输入图像和固定的几个图像分类,任务是我们想要输入一个图像,然后我们要标记每个像素所属的标签为固定数据类中的一个 使用卷积神经,网络为每个小区块进行 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时24&&25
课时24 深度学习开源库使用介绍(上) Caffe 被用于重新实现AlexNet,然后用AlexNet的特征来解决其他事情 用C++书写的,可以去GitHub上面读取源代码 主要四个类: Blob可以 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时8&&9
课时8 反向传播与神经网络初步(上) 反向传播在运算连路中,这是一种通过链式法则来进行递推的计算过程,这个链路中的每一个中间变量都会对最终的损失函数产生影响. 链式法则通常包含两部分,局部梯度和后一层 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时12&&13
课时12 神经网络训练细节part2(上) 训练神经网络是由四步过程组成,你有一个完整的数据集图像和标签,从数据集中取出一小批样本,我们通过网络做前向传播得到损失,告诉我们目前分类效果怎么样.然后我们 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时11
课时11 神经网络训练细节part1(下) 2010年,Glorot等人写的论文,我们称之为Xavier初始化,他们关注了神经元的方差表达式.他们推荐一种初始化方式,那就是对每个神经元的输入进行开根号 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时10
课时10 神经网络训练细节part1(上) 没有大量的数据也不会有太多影响,只需要找一个经过预训练的卷积神经网络然后进行调整 从数据集中抽样一小批数据, 将数据运入卷积神经网络中来计算损失值 通过反向 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时7
课时7 线性分类器损失函数与最优化(下) 我们为什么要最大化对数概率而非直接最大化概率? 你在做逻辑斯蒂回归时,如果你只是想要最大化概率,那你使用log是无意义的.因为log函数是单调函数,最大化概率 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时14&&15
课时14 卷积神经网络详解(上) CNN处理的是一些数据块,在这之间有很多层,一系列的层将输入数据变换为输出数据,所以完成操作的中间量不仅是NN时候讲的那些向量,而是立体结构,有宽,高和深度,在整个计 ...
随机推荐
- python 怎么启动一个外部命令程序, 并且不阻塞当前进程
http://www.myexception.cn/perl-python/1278887.html http://blog.chinaunix.net/uid-25979788-id-3081912 ...
- HTML5开发移动web应用—JQuery Mobile(2)-导航栏和页脚
导航栏部分的代码一般放置在data-role为header的div的内. <div data-role="header"> <a href="#&quo ...
- Eclipse打包Android项目时用到proguard.cfg后,出现的Warning:can't find referenced class问题的解决方式
Warning: can't find superclass or interface Warning: can't find referenced class 这两个问题的解决方法: 1.要把你项目 ...
- 使用zTree进行数据动态显示
由于公司项目的须要.现学了一下zTree的使用. 以下是我项目的结构图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYmVuamFtaW5fd2h4/f ...
- UVA 11246 - K-Multiple Free set(数论推理)
UVA 11246 - K-Multiple Free set 题目链接 题意:一个{1..n}的集合.求一个子集合.使得元素个数最多,而且不存在有两个元素x1 * k = x2,求出最多的元素个数是 ...
- bzoj 1088 简单dfs
/* 题意:给你一列仅仅能取0和1的数. 限制:每3个相邻的数的值固定,开头和结尾仅仅限制两个数 求:有多少种组合方案 解:搜索,在开头和结尾再加一个仅仅能取零的数,直接推断是否符合条件就可以 */ ...
- Testng 运行报错:"Total tests run: 0, Failures: 0, Skips: 0"以及找不到class文件的问题
"Total tests run: 0, Failures: 0, Skips: 0" This means that there were no tests executed a ...
- WPF绑定各种数据源之object数据源
一.WPF绑定各种数据源索引 WPF 绑定各种数据源之Datatable WPF绑定各种数据源之object数据源 WPF绑定各种数据源之xml数据源 WPF绑定各种数据源之元素控件属性 Bindin ...
- Eclipse中的Web项目自己主动部署到Tomcat
一.原因. 1.写java程序有一段时间了,但非常久没用eclipse了.所以使用eclipse编写的web项目部署到tomcat 的方式也不是非常清楚,以下记录一下将Eclipse 上的web项目自 ...
- CSS3 的10种Loading
昨晚用CSS3实现了几种常见的Loading效果,虽然很简单,但还是分享一下,顺便也当是做做笔记…… 第1种效果: 代码如下: <div class="loading"> ...