【BZOJ2339】卡农(递推,容斥)

题面

BZOJ

题解

先简化一下题意:

在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数。

我们设\(f[i]\)表示选择\(i\)个数异或和为\(0\)的方案数。

直接算是很麻烦的,所以我们反过来,总数减去不合法的。

因为确定了前\(i-1\)个数最后一个数就已经知道了。

所以总方案数是\(A_{2^n-1}^{i-1}\),不合法的有两种,一种是选择了\(0\),一种是有重复。

选择了\(0\),意味着前\(i-1\)个数的异或和为\(0\),所以方案数是\(f[i-1]\)种。

有重复,我们枚举哪个数重复了,那么剩下的\(i-2\)个数的异或和仍然为\(0\)

所以方案数是\(f[i-2]\times (2^n-1-(i-2))\),题目没有考虑顺序,但是我们计算的时候先考虑了顺序,所以这里的方案数还需要考虑在哪个位置,也就是再乘上一个\((i-1)\)

所以$$f[i]=A_{2n-1}{i-1}-f[i-1]-(i-1)\times f[i-2]\times(2^n-1-(i-2))$$

最终的答案再把顺序的问题处理一下就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 100000007
#define MAX 1000100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int jv=1,A[MAX],n,m,p,f[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int main()
{
n=read();m=read();p=fpow(2,n);f[0]=A[0]=1;f[1]=0;
for(int i=1;i<=m;++i)jv=1ll*jv*i%MOD;jv=fpow(jv,MOD-2);
for(int i=1;i<=m;++i)A[i]=1ll*A[i-1]*(p-i+MOD)%MOD;
for(int i=2;i<=m;++i)f[i]=((A[i-1]-f[i-1]+MOD)%MOD-1ll*f[i-2]*(i-1)%MOD*(p-1-(i-2)+MOD)%MOD+MOD)%MOD;
printf("%lld\n",1ll*jv*f[m]%MOD);
return 0;
}

【BZOJ2339】卡农(递推,容斥)的更多相关文章

  1. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  2. bzoj1042硬币购物——递推+容斥

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...

  3. BZOJ3589 动态树[树剖/暴力/容斥]

    操作0,显然直接线段树解决. 操作1,瓶颈在于重叠的链只算一次.在线段树上来看,如果一个区间被覆盖了,那么只算这个区间,子树里面也就不管了. 考虑对节点打标记来表示是否覆盖.但是,如果统一打完之后,并 ...

  4. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  5. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  6. BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)

    题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...

  7. 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)

    题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...

  8. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  9. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

随机推荐

  1. katalon系列八:Katalon Studio图片识别

    Katalon Studio自带集成了图片识别功能,有2个比较有用的图片识别相关的命令:Wait For Image Present和Click Image.这里重点讲下Click Image命令: ...

  2. Python中abs()和math.fabs()区别

    描述:Python中fabs(x)方法返回x的绝对值.虽然类似于abs()函数,但是两个函数之间存在以下差异: abs()是一个内置函数,而fabs()在math模块中定义的. fabs()函数只适用 ...

  3. json_encode替代函数

    <?php   function jsonEncode($var) {     if (function_exists('json_encode')) {         return json ...

  4. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  5. 无法找到 ContextLoaderListener 类

    问题:java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderListener 原因:Eclips ...

  6. [redis] linux下主从篇(2)

    一.前言1.为何要主从架构避免单机故障,主服务器挂掉后,还可以手动切换从服务为主服务继续工作,保持缓存数据完整. 2.主从同步的原理步骤从服务器连接主服务器,发送SYNC命令:主服务器接收到SYNC命 ...

  7. js 插件 issue

    1 iscroll 5 和 lazyload 同时使用  转自 yinjie //lazyload var $scrollEle = $("#wrapper") $("i ...

  8. 王者荣耀交流协会 — Alpha阶段中间产物

    1. 版本控制 Coding :https://git.coding.net/SuperCodingChao/PSPDaily.git 2. 软件功能说明书 软件功能说明书发布在小组成员袁玥同学的博客 ...

  9. mininet实验 脚本实现控制交换机行为

    写在前面 本文参考 通过这个实验,我学习到了另一种下流表的方式. 下流表有两种方式(我目前了解): 通过controller下发. 通过OvS提供的API直接向OvS交换机下流表. 本实验脚本已经把相 ...

  10. 七周七语言之用Io编写领域特定语言

    如果你想获得更好的阅读体验,可以前往我在 github 上的博客进行阅读,http://lcomplete.github.io/blog/2013/06/05/sevenlang-io/. Io 语言 ...