0表示被父亲控制,1表示被儿子控制,2表示被自己控制。f表示最少士兵数,g表示方案数。

  转移贼难写,写了好久之后写不下去了,看了一眼题解,学习了。。。原来还可以这么搞

  比如求f[i][1]的时候,要在所有儿子里选一个儿子的f[to][2]来转移,这有一个非常巧妙的做法,那就是从自己转移...

  每次可以选择从f[i][1]+min(f[to][1], f[to][2])转移或者从f[i][0]+f[to][2]转移,并使得f[i][1]比f[i][0]先转移,这样的话相当于每次会从第一次取f[to][2]和已经取过f[to][2]转移,十分正确,非常好写...

  还要注意的是如果从f[i][0]转移,方案数得加上g[i][0]*g[to][2]。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define MOD(x) ((x)>=mod?(x-mod):(x))
using namespace std;
const int maxn=, inf=1e9, mod=;
struct poi{int too, pre;}e[maxn<<];
int n, x, y, tot;
int last[maxn], g[maxn][], f[maxn][];;
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot]=(poi){y, last[x]}; last[x]=tot;}
void dfs(int x, int fa)
{
f[x][]=maxn; f[x][]=g[x][]=g[x][]=g[x][]=;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa)
{
dfs(too, x);
ll tmpf=min(maxn, min(f[x][]+min(f[too][], f[too][]), f[x][]+f[too][])), tmpg=;
if(f[x][]+f[too][]==tmpf) tmpg+=g[too][];
if(f[x][]+f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
f[x][]=tmpf; g[x][]=1ll*g[x][]*tmpg%mod;
if(f[x][]+f[too][]==tmpf) g[x][]+=1ll*g[x][]*g[too][]%mod, g[x][]=MOD(g[x][]);
f[x][]+=f[too][]; f[x][]=min(maxn, f[x][]); g[x][]=1ll*g[x][]*g[too][]%mod;
tmpf=min(f[too][], min(f[too][], f[too][])); tmpg=;
if(f[too][]==tmpf) tmpg+=g[too][];
if(f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
if(f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
f[x][]+=tmpf; f[x][]=min(maxn, f[x][]); g[x][]=1ll*g[x][]*tmpg%mod;
}
}
int main()
{
read(n);
for(int i=;i<n;i++) read(x), read(y), add(x, y), add(y, x);
dfs(, );
if(f[][]<f[][]) printf("%d\n%d", f[][], g[][]);
else if(f[][]>f[][]) printf("%d\n%d", f[][], g[][]);
else printf("%d\n%d", f[][], MOD(g[][]+g[][]));
}

  明明答案不会爆int的。。。但是不开LL就WA,至今不明T T 神tm..f的不合法状态是inf加起来爆int了,判了一下之后终于能int过了,因为比LL快也跑到了rk10

  为了查这个我WA了一页...

bzoj2314: 士兵的放置(树形DP)的更多相关文章

  1. 【BZOJ2314】士兵的放置 树形DP

    [BZOJ2314]士兵的放置 Description 八中有N个房间和N-1双向通道,任意两个房间均可到达.现在出了一件极BT的事,就是八中开始闹鬼了.老大决定加强安保,现在如果在某个房间中放一个士 ...

  2. BZOJ 2314: 士兵的放置( 树形dp )

    树形dp... dp(x, 0)表示结点x不放士兵, 由父亲控制: dp(x, 1)表示结点x不放士兵, 由儿子控制: dp(x, 2)表示结点x放士兵. ---------------------- ...

  3. BZOJ2314 士兵的放置

    树形DP,恩然后就不会了... 先写了个错的离谱程序...果然WA了 然后开始乱搞,欸,对了! 令f[i], g[i], h[i]分别表示i号节点自己放士兵,被儿子上的士兵控制,不被儿子上的士兵控制但 ...

  4. 【树形DP】MZOJ_1063_士兵守卫

    本题也是这三天来在下写的几篇树形DP之一,但是不知道为什么洛谷上面老是unknown error,...直接去了UVa,说我编译错误...我在想是不是头文件的原因,于是被逼无奈,交了一道c89的代码. ...

  5. 【树形DP】【P1364】医院放置

    传送门 Description 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口.圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接 ...

  6. 『战略游戏 最大利润 树形DP』

    通过两道简单的例题,我们来重新认识树形DP. 战略游戏(luoguP1026) Description Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要 ...

  7. 树形dp 入门

    今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...

  8. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  9. 初涉树形dp

    算是一个……复习以及进阶? 什么是树形dp 树形dp是一种奇妙的dp…… 它的一个重要拓展是和各种树形的数据结构结合,比如说在trie上.自动机上的dp. 而且有些时候还可以拓展到环加外向树.仙人掌上 ...

随机推荐

  1. Python中的解决中文字符编码的问题

    python3中str默认为Unicode的编码格式 python2中str默认为bytes类型的编码格式 Unicode是一32位编码格式,不适合用来传输和存储,所以必须转换成utf-8,gbk等等 ...

  2. linux-ubuntu常用命令(深圳文鹏)

    系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...

  3. CentOS7.2安装mysql-5.7.19多实例

    安装多实例之前首先需要先安装mysql,这里就不介绍如何安装mysql了,参考前面的博客:https://www.cnblogs.com/hei-ma/p/9505509.html 安装多实例之前需要 ...

  4. CMDBuild2.4.3安装配置

    参考文档: 官网:http://www.cmdbuild.org/en 参考:http://blog.csdn.net/shawn210/article/details/70230248 本文涉及CM ...

  5. winform圆角窗体实现

    winform圆角窗体实现 1.窗体的FormBorderStyle设置成None,不要控制边框 2.TransparencyKey和BackColor颜色设置成相同的,这样,窗体就透明了 3.以此为 ...

  6. 第六次ScrumMeeting博客

    第六次ScrumMeeting博客 本次会议于10月31日(二)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 除了汇报任务外,窦鑫泽同学还就前 ...

  7. hdu1010--Tempter of the Bone(迷宫)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1010 Tempter of the Bone Time Limit: 2000/1000 MS (Jav ...

  8. 青岛 2016ICPC 区域现场赛题目

    A. Relic Discovery B. Pocket Cube C. Pocky D. Lucky Coins E. Fibonacci F. Lambda Calculus G. Coding ...

  9. 【beta】Scrum站立会议第4次....11.6

    小组名称:nice! 组长:李权 成员:于淼  刘芳芳韩媛媛 宫丽君 项目内容:约跑app(约吧) 时间:  12:00——12:30 地点:传媒西楼220室 本次对beta阶段的需求进行更新如下: ...

  10. PAT L1-017 到底有多二

    https://pintia.cn/problem-sets/994805046380707840/problems/994805121500692480 一个整数“犯二的程度”定义为该数字中包含2的 ...