0表示被父亲控制,1表示被儿子控制,2表示被自己控制。f表示最少士兵数,g表示方案数。

  转移贼难写,写了好久之后写不下去了,看了一眼题解,学习了。。。原来还可以这么搞

  比如求f[i][1]的时候,要在所有儿子里选一个儿子的f[to][2]来转移,这有一个非常巧妙的做法,那就是从自己转移...

  每次可以选择从f[i][1]+min(f[to][1], f[to][2])转移或者从f[i][0]+f[to][2]转移,并使得f[i][1]比f[i][0]先转移,这样的话相当于每次会从第一次取f[to][2]和已经取过f[to][2]转移,十分正确,非常好写...

  还要注意的是如果从f[i][0]转移,方案数得加上g[i][0]*g[to][2]。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define MOD(x) ((x)>=mod?(x-mod):(x))
using namespace std;
const int maxn=, inf=1e9, mod=;
struct poi{int too, pre;}e[maxn<<];
int n, x, y, tot;
int last[maxn], g[maxn][], f[maxn][];;
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot]=(poi){y, last[x]}; last[x]=tot;}
void dfs(int x, int fa)
{
f[x][]=maxn; f[x][]=g[x][]=g[x][]=g[x][]=;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa)
{
dfs(too, x);
ll tmpf=min(maxn, min(f[x][]+min(f[too][], f[too][]), f[x][]+f[too][])), tmpg=;
if(f[x][]+f[too][]==tmpf) tmpg+=g[too][];
if(f[x][]+f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
f[x][]=tmpf; g[x][]=1ll*g[x][]*tmpg%mod;
if(f[x][]+f[too][]==tmpf) g[x][]+=1ll*g[x][]*g[too][]%mod, g[x][]=MOD(g[x][]);
f[x][]+=f[too][]; f[x][]=min(maxn, f[x][]); g[x][]=1ll*g[x][]*g[too][]%mod;
tmpf=min(f[too][], min(f[too][], f[too][])); tmpg=;
if(f[too][]==tmpf) tmpg+=g[too][];
if(f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
if(f[too][]==tmpf) tmpg+=g[too][], tmpg=MOD(tmpg);
f[x][]+=tmpf; f[x][]=min(maxn, f[x][]); g[x][]=1ll*g[x][]*tmpg%mod;
}
}
int main()
{
read(n);
for(int i=;i<n;i++) read(x), read(y), add(x, y), add(y, x);
dfs(, );
if(f[][]<f[][]) printf("%d\n%d", f[][], g[][]);
else if(f[][]>f[][]) printf("%d\n%d", f[][], g[][]);
else printf("%d\n%d", f[][], MOD(g[][]+g[][]));
}

  明明答案不会爆int的。。。但是不开LL就WA,至今不明T T 神tm..f的不合法状态是inf加起来爆int了,判了一下之后终于能int过了,因为比LL快也跑到了rk10

  为了查这个我WA了一页...

bzoj2314: 士兵的放置(树形DP)的更多相关文章

  1. 【BZOJ2314】士兵的放置 树形DP

    [BZOJ2314]士兵的放置 Description 八中有N个房间和N-1双向通道,任意两个房间均可到达.现在出了一件极BT的事,就是八中开始闹鬼了.老大决定加强安保,现在如果在某个房间中放一个士 ...

  2. BZOJ 2314: 士兵的放置( 树形dp )

    树形dp... dp(x, 0)表示结点x不放士兵, 由父亲控制: dp(x, 1)表示结点x不放士兵, 由儿子控制: dp(x, 2)表示结点x放士兵. ---------------------- ...

  3. BZOJ2314 士兵的放置

    树形DP,恩然后就不会了... 先写了个错的离谱程序...果然WA了 然后开始乱搞,欸,对了! 令f[i], g[i], h[i]分别表示i号节点自己放士兵,被儿子上的士兵控制,不被儿子上的士兵控制但 ...

  4. 【树形DP】MZOJ_1063_士兵守卫

    本题也是这三天来在下写的几篇树形DP之一,但是不知道为什么洛谷上面老是unknown error,...直接去了UVa,说我编译错误...我在想是不是头文件的原因,于是被逼无奈,交了一道c89的代码. ...

  5. 【树形DP】【P1364】医院放置

    传送门 Description 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口.圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接 ...

  6. 『战略游戏 最大利润 树形DP』

    通过两道简单的例题,我们来重新认识树形DP. 战略游戏(luoguP1026) Description Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要 ...

  7. 树形dp 入门

    今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...

  8. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  9. 初涉树形dp

    算是一个……复习以及进阶? 什么是树形dp 树形dp是一种奇妙的dp…… 它的一个重要拓展是和各种树形的数据结构结合,比如说在trie上.自动机上的dp. 而且有些时候还可以拓展到环加外向树.仙人掌上 ...

随机推荐

  1. stl源码分析之priority queue

    前面两篇介绍了gcc4.8的vector和list的源码实现,这是stl最常用了两种序列式容器.除了容器之外,stl还提供了一种借助容器实现特殊操作的组件,谓之适配器,比如stack,queue,pr ...

  2. 「LeetCode」0952-Largest Component Size by Common Factor(Go)

    分析 注意到要求的是最大的连通分量,那么我们可以先打素数表(唯一分解定理),然后对每个要求的数,将他们同分解出的质因子相连(维护一个并查集),然后求出最大的联通分量即可. 这里使用了筛法求素数.初始化 ...

  3. Mysql基础操作语句

    SQL 简单的增删改查 不区分大小写, 表名和字段名可不加引号 查询语句 SELECT * FROM `table_name`; -- 注释 CTRL+/ : 注释 CTRL+/ : 取消注释 /* ...

  4. 算法笔记(c++)--关于01背包的滚动数组

    算法笔记(c++)--关于01背包的滚动数组 关于01背包问题:基本方法我这篇写过了. https://www.cnblogs.com/DJC-BLOG/p/9416799.html 但是这里数组是N ...

  5. CentOS-6.x系列查看cpu核数

    使用CentOS7.x使用习惯了后用top命令,然后按1就可以查看相关的cpu核心数等相关信息 相关概念: 物理CPU:实际Server中插槽上的CPU个数. 物理cpu数量:可以数不重复的 phys ...

  6. Thunder团队第七周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 宋雨在照相,所以不在相片中. 参会成员: 王航:http://www.cnblogs.co ...

  7. 团队Alpha冲刺(三)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:鸿杰 组员10:刘一好 组员11:何宇恒 展示组内最 ...

  8. DP--HDU 1003(最大子串和)

    问题描述:          给定整数A1, A2,--AN (可能有负数),求I到j的最大值. 例如:          -2, 11, -4, 13, -5, -2时答案为20 对于这个问题的算法 ...

  9. web登录密码加密

    文章:如何实现登录页面密码加密 文章:用RSA加密实现Web登录密码加密传输 文章:web登录用户名密码加密 知乎文章:Web前端密码加密是否有意义? 文章:记录一次黑客模拟攻击 成功拿到淘宝账号和密 ...

  10. Alpha-9

    前言 失心疯病源9 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 熬夜肝代码 代码签入github 明天的计划 最好能够完成对接环节 准备展示内容 还剩下哪 ...