Omeed 线段树
题面
2.12 - - -
题解
大概还是挺妙的?
首先基础分和连击分互不干扰,所以可以分开统计。
基础分的统计比较简单,等于:
\]
连击分的统计就比较复杂了,因为是求期望,根据期望的线性性,我们可以先算出\(f_i\)表示每个音符的期望连击分,再计算整个区间的期望连击分。
观察连击分的统计方法,可以知道,区间其实是互不干扰的,也就是说,每个区间中的期望连击分,其实都是在对进入这个区间时的期望连击分\(f_{l - 1}\)的一个叠加和增幅。
考虑区间的期望连击分可以表示为:
\]
因为只有这次打到了完美才可以计入这个音符的贡献,所以这次的贡献是建立在当前音符完美的情况下的,所以贡献就是\(p_i(f_{i - 1} + 1)\)了。
考虑\(f_i\)如何转移。
\]
\]
观察到这是一个类似于\(kx + b\)的形式,因此对于一个\(f_i\),如果一个\(j\)满足\(j \le i\),那么一定可以表示为\(f_i = kf_j + b\)的形式。
那么对于区间\([l, r]\),因为其中每个\(f_i\),都可以表示为类似\(kf_{l - 1} + b\)的形式,因此,这个区间的连击分也一定可以表示为\(kf_{l - 1} + b\)的形式。
因此我们考虑线段树,对于区间\([l, r]\)我们维护5个变量,\(k, b, sumb, sumk, sump\),其中\(sump\)是用来算基础分的,\(sumb, sumk\)就是区间连击分的系数,\(k, b\)则是\(f_r = kf_{l - 1} + b\)中的\(k\)和\(b\).
因为\(B\)是对于整个区间的系数,因此我们可以先不考虑它,直接统计后面的部分,最后再乘上\(B\)即可。
因此我们考虑如何合并2个区间\([l, mid], [mid + 1, r]\).
根据前面的推导,现在有
\]
现在要合并这2个变量,我们只需要把后者表示为\(kf_{l - 1} + b\)的形式即可。
所以直接把\(f_{mid}\)带入后面的等式化简就行了,化简出来新变量的\(k = k_l k_r, \quad b = k_rb_l + b_r\)
然后来考虑合并区间信息:
现在我们有:
\]
\]
我们现在要得到的新区间应该要形如第一个区间的样子,因为第一个区间已经是这样了,所以我们只需要转化一下第二个区间,然后和第一个区间加在一起就行了。
我们直接带入上面的\(f_{mid} = k_l f_{l - 1} + b_l\),然后化简并和第一个区间的式子加在一起,最后得到新的\(sumk = sumk_r k_l + sumk_l, \quad sumb = sumk_r b_l + sumb_r + sumb_l\)
最后
\]
代码
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long
#define AC 501000
#define ac 2001000
#define p 998244353
#define mo(x) ((x) % p)
#define mul(a, b) (1LL * (a) * (b) % p)//error !!!都要用(a), (b)...啊
#define h(x, y) (mul((x), qpow((y), p - 2)))
int n, m, t, A, B;
int pi[AC];
struct node{
int sumk, sumb, k, b, sump;
}tree[ac];
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void up(int &a, int b) {a += b; if(a < 0) a += p; if(a >= p) a -= p;}
inline int ad(int a, int b) {a += b; if(a < 0) a += p; if(a >= p) a -= p; return a;}
inline int qpow(int x, int have)
{
int rnt = 1;
while(have)
{
if(have & 1) rnt = mul(rnt, x);
x = mul(x, x), have >>= 1;
}
return rnt;
}
void pre()
{
n = read();//对于正解来说没有什么用的输入
n = read(), m = read();
int a = read(), b = read();
t = h(a, b), A = read(), B = read();
for(R i = 1; i <= n; i ++) a = read(), b = read(), pi[i] = h(a, b);
}
node merge(node ll, node rr)
{
node x;
x.k = mul(ll.k, rr.k), x.b = ad(mul(rr.k, ll.b), rr.b);
x.sumk = ad(mul(rr.sumk, ll.k), ll.sumk);
x.sumb = ad(mul(rr.sumk, ll.b), ad(rr.sumb, ll.sumb));
x.sump = ad(ll.sump, rr.sump);
return x;
}
#define update(x) tree[x] = merge(tree[x << 1], tree[(x << 1) + 1]);
node make(int now)
{
node x;
x.k = ad(pi[now], mul(t, 1 - pi[now]));
x.b = x.sumk = x.sumb = x.sump = pi[now];
return x;
}
void build(int x, int ll, int rr)
{
if(ll == rr) {tree[x] = make(ll); return ;}
int mid = (ll + rr) >> 1;
build(x << 1, ll, mid), build((x << 1) + 1, mid + 1, rr);
update(x);
}
void change(int x, int l, int r, int w)
{
if(l == r) {tree[x] = make(w); return ;}
int mid = (l + r) >> 1;
if(w <= mid) change(x << 1, l, mid, w);
else change((x << 1) + 1, mid + 1, r, w);
update(x);
}
node find(int x, int l, int r, int ll, int rr)
{
if(l == ll && r == rr) return tree[x];
int mid = (l + r) >> 1;
if(rr <= mid) return find(x << 1, l, mid, ll, rr);
else if(ll > mid) return find((x << 1) + 1, mid + 1, r, ll, rr);
else
{
node a = find(x << 1, l, mid, ll, mid);
node b = find((x << 1) + 1, mid + 1, r, mid + 1, rr);
return merge(a, b);
}
}
void work()
{
for(R i = 1; i <= m; i ++)
{
int o = read();
if(!o)
{
int x = read(), a = read(), b = read();
pi[x] = h(a, b), change(1, 1, n, x);
}
else
{
int ll = read(), rr = read();
node x = find(1, 1, n, ll, rr);
//int ans = mul(ad(mul(x.sumk, pi[ll]), ad(x.sumb, pi[ll])), B);
int ans = mul(x.sumb, B);
up(ans, mul(A, x.sump));
printf("%d\n", ans);
}
}
}
int main()
{
freopen("in.in", "r", stdin);
pre();
build(1, 1, n);
work();
fclose(stdin);
return 0;
}
Omeed 线段树的更多相关文章
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树
#44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...
- CF719E(线段树+矩阵快速幂)
题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...
- 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序
3779: 重组病毒 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 224 Solved: 95[Submit][Status][Discuss] ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
随机推荐
- Nginx入门篇(六)之反向代理和负载均衡
一.Nginx负载均衡集群 介绍 负载均衡(Load Balance)集群提供了一种行之有效的办法,来扩展网络设备和服务器负载.带宽和吞吐量,同时加强了网络数据处理能力,提供了网络的灵活性和可用性. ...
- weka使用笔记3---classfily API调用
分类器在数据挖掘中的作用不言而喻,weka中的分类器有很多种类型,但是weka在输出结果中,只输出了一个分类的预测的类型,没有输出分类的得分,有一些不给力.如果想知道得分和其预测的类的话,就得调用we ...
- 修改表的字段顺序(mysql)
ALTER TABLE 表名 CHANGE 字段名 字段名 int not null default 1 AFTER 它前面的字段;
- php文章tag标签的增删
<?php session_start(); if($_POST){ $_SESSION['old']=array('one','two','three','four', ...
- MongoDB 极简实践入门
原作者StevenSLXie; 原链接(https://github.com/StevenSLXie/Tutorials-for-Web-Developers/blob/master/MongoDB% ...
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- RyuBook1.0案例一:Switching Hub项目源码分析
开发目标 实现一个带MAC地址学习功能的二层交换机 Openflow交换机与Openflow控制器安全通道建立步骤 switch and controller建立未加密TCP连接或者加密的TLS连接 ...
- 美国警察iPhone数据线挡住歹徒子弹获救
泡泡网手机频道11月1日 现在手机的功能越来越丰富,不仅可以接打电话.收发短信.玩游戏聊天,关键时刻还能救命.前天HTC手机再次忠心护主,让许多同学对HTC赞赏有加.而现在又有人捡了一条命,不过这次救 ...
- Windows下使用7-zip命令自动备份文件
在上一篇博文中,介绍了使用WinRAR自动备份文件,后来改用了腾讯云服务器,上面默认没有安装WinRAR,只有7-zip,又不想在服务器上安装许多软件,就查了下7-zip的命令,贴出来备忘~ 系统环境 ...
- nginx upstream 名称下划线问题
原始配置: user nobody;worker_processes 1; #pid logs/nginx.pid; worker_connections 1024;} http ...