题目链接:

http://poj.org/problem?id=2524

Ubiquitous Religions
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 39369   Accepted: 18782

Description

There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

Input

The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

Output

For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

Sample Input

10 9
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
10 4
2 3
4 5
4 8
5 8
0 0

Sample Output

Case 1: 1
Case 2: 7

Hint

Huge input, scanf is recommended.
分析:
裸的并查集(我觉得叫查并集更好)
代码如下:
#include<stdio.h>
#include<iostream>
using namespace std;
#define max_v 50005
int pa[max_v];//pa[x] 表示x的父节点
int rk[max_v];//rk[x] 表示以x为根结点的树的高度
int n,ans;
void make_set(int x)
{
pa[x]=x;
rk[x]=0;//一开始每个节点的父节点都是自己
}
int find_set(int x)//带路径压缩的查找
{
if(x!=pa[x])
pa[x]=find_set(pa[x]);
return pa[x];
}
void union_set(int x,int y)
{
x=find_set(x);//找到x的根结点
y=find_set(y);
if(x==y)//根结点相同 同一棵树
return ;
ans--;
if(rk[x]>rk[y])
{
pa[y]=x;
}else
{
pa[x]=y;
if(rk[x]==rk[y])
rk[y]++;
}
}
int main()
{
int n,m,j=0;
while(~scanf("%d %d",&n,&m))
{
if(m+n==0)
break;
for(int i=1;i<=n;i++)
{
make_set(i);
}
ans=n;
for(int i=0;i<m;i++)
{
int x,y;
scanf("%d %d",&x,&y);
union_set(x,y);
}
printf("Case %d: %d\n",++j,ans);
}
return 0;
}

  

POJ 2524 独一无二的宗教(裸并查集)的更多相关文章

  1. poj 2524:Ubiquitous Religions(并查集,入门题)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23997   Accepted:  ...

  2. POJ 2524 Ubiquitous Religions (并查集)

    Description 当今世界有很多不同的宗教,很难通晓他们.你有兴趣找出在你的大学里有多少种不同的宗教信仰.你知道在你的大学里有n个学生(0 < n <= 50000).你无法询问每个 ...

  3. poj 2524 Ubiquitous Religions(简单并查集)

    对与知道并查集的人来说这题太水了,裸的并查集,如果你要给别人讲述并查集可以使用这个题当做例题,代码中我使用了路径压缩,还是有一定优化作用的. #include <stdio.h> #inc ...

  4. poj 2524 Ubiquitous Religions(并查集)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23168   Accepted:  ...

  5. poj 2524 求连通分量(并查集模板题)

    求连通分量 Sample Input 10 91 21 31 41 51 61 71 81 91 1010 42 34 54 85 80 0Sample Output Case 1: 1Case 2: ...

  6. POJ 2524 Ubiquitous Religions 【并查集】

    解题思路:输入总人数 n,和m组数据:即和杭电畅通工程相类似,对这m组数据做合并操作后,求最后一共有多少块区域. #include<stdio.h> int pre[50001]; int ...

  7. poj 2236:Wireless Network(并查集,提高题)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 16065   Accepted: 677 ...

  8. 【POJ】The Suspects(裸并查集)

    并查集的模板题,为了避免麻烦,合并的时候根节点大的合并到小的结点. #include<cstdio> #include<algorithm> using namespace s ...

  9. poj 1182:食物链(种类并查集,食物链问题)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44168   Accepted: 12878 Description ...

随机推荐

  1. 最小树形图--朱刘算法([JSOI2008]小店购物)

    题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...

  2. PC端-上传头像并裁剪

    界面一: <link href="../theme/js/layui.layim/src/css/layui.css" rel="stylesheet"/ ...

  3. Cloud Computing Causing Digital Business Transformation

    2015-04-13 Cloud Computing Causing Digital Business Transformation We hear all about the cloud, and  ...

  4. Mybatis学习第二天——mapper的动态代理

    传统的Dao层开发通过接口与实现类的方式,Mybatis中通过mapper动态代理是需要定义接口. 1.传统Dao层封装 那么可以将公共资源提取出来,剩余的封装成方法来实现.下面是UserDaoImp ...

  5. python 3 过滤股票

    参考某个博客,代码不全,地址找不到了见谅,加了些自己弄的算法. 备忘 #-*- coding: utf-8 -*-import os, reimport time def filefilter(com ...

  6. python之复数

    #coding=utf8 ''''' 复数是由一个实数和一个虚数组合构成,表示为:x+yj 一个负数时一对有序浮点数(x,y),其中x是实数部分,y是虚数部分. Python语言中有关负数的概念: 1 ...

  7. 五大常用算法之四:回溯法[zz]

    http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html 1.概念 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试 ...

  8. 沉淀再出发:再谈java的多线程机制

    沉淀再出发:再谈java的多线程机制 一.前言 自从我们学习了操作系统之后,对于其中的线程和进程就有了非常深刻的理解,但是,我们可能在C,C++语言之中尝试过这些机制,并且做过相应的实验,但是对于ja ...

  9. 把所有的小图标一起做成雪碧图吧 请用gulp-css-spriter.

    用gulp-css-spriter很简单. 第一步: 在某个文件夹用shitf+鼠标右键 第二步: npm install gulp-css-spriter https://www.npmjs.com ...

  10. GET POST 传值与接收案例

      第一种:GET传递 前台 ajax   GET 传递 :即在请求的地址后面加上参数,URL地址长度有显示,安全性低 后台接收:Request.QueryString[“参数名字”]! 例如: fu ...