【bzoj3130】[Sdoi2013]费用流 二分+网络流最大流
题目描述
Alice和Bob做游戏,给出一张有向图表示运输网络,Alice先给Bob一种最大流方案,然后Bob在所有边上分配总和等于P的非负费用。Alice希望总费用尽量小,而Bob希望总费用尽量大。求两人都采取最优策略的情况下最大流及总费用。
输入
第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。
输出
第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。
样例输入
3 2 1
1 2 10
2 3 15
样例输出
10
10.000
题解
二分+网络流最大流
显然对于Alice给出的一种方案,Bob只需要在流量最大的边上设置费用P,其它边费用为0,即可使费用最大。
所以Alice要使费用尽量小,就需要使流量最大的边的流量最小。
先跑一遍最大流得出第一问的答案。然后二分最大流量,对于一条边,将其容量设置为 min(原图中流量,mid) ,跑最大流,如果最大流等于原图的最大流则可行,否则不可行。
最后的答案就是mid*P。
我才不会告诉你们第二问puts("nan")可过呢
#include <queue>
#include <cstdio>
#include <cstring>
#define N 110
#define M 2010
using namespace std;
queue<int> q;
int m , px[M] , py[M] , head[N] , to[M] , next[M] , cnt , s , t , dis[N];
double pz[M] , val[M];
inline void add(int x , int y , double z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
double dinic(int x , double low)
{
if(x == t) return low;
double temp = low , k;
int i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
double solve(double mid)
{
int i;
double ans = 0;
memset(head , 0 , sizeof(head)) , cnt = 1;
for(i = 1 ; i <= m ; i ++ ) add(px[i] , py[i] , min(pz[i] , mid));
while(bfs()) ans += dinic(s , 1e9);
return ans;
}
int main()
{
int n , i , cnt = 50;
double l = 0 , r = 1e9 , mid , flow , p;
scanf("%d%d%lf" , &n , &m , &p) , s = 1 , t = n;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%lf" , &px[i] , &py[i] , &pz[i]);
printf("%.0lf\n" , flow = solve(1e9));
while(cnt -- )
{
mid = (l + r) / 2;
if(solve(mid) == flow) r = mid;
else l = mid;
}
printf("%.4lf\n" , r * p);
return 0;
}
【bzoj3130】[Sdoi2013]费用流 二分+网络流最大流的更多相关文章
- 【bzoj1822】[JSOI2010]Frozen Nova 冷冻波 计算几何+二分+网络流最大流
题目描述 WJJ喜欢“魔兽争霸”这个游戏.在游戏中,巫妖是一种强大的英雄,它的技能Frozen Nova每次可以杀死一个小精灵.我们认为,巫妖和小精灵都可以看成是平面上的点. 当巫妖和小精灵之间的直线 ...
- 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流
题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...
- 【bzoj1532】[POI2005]Kos-Dicing 二分+网络流最大流
题目描述 Dicing 是一个两人玩的游戏,这个游戏在Byteotia非常流行. 甚至人们专门成立了这个游戏的一个俱乐部. 俱乐部的人时常在一起玩这个游戏然后评选出玩得最好的人.现在有一个非常不走运的 ...
- BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 960 Solved: 5 ...
- BZOJ-3130 费用流 (听题目胡扯丶裸最大流) 二分判定+最大流+实数精度乱搞
DCrusher爷喜欢A我做的水题,没办法,只能A他做不动的题了.... 3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9658 Accepted: ...
- BZOJ3130 [Sdoi2013]费用流 【网络流 + 二分】
题目 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每 ...
- BZOJ3130: [Sdoi2013]费用流(二分,最大流)
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...
随机推荐
- 20155334 实验四:Android程序设计
20155334实验四:Android程序设计 实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android组件.布局管理器的使用: 掌握Android中事件 ...
- css实现div两列布局——左侧宽度固定,右侧宽度自适应(两种方法)
原文:css实现div两列布局--左侧宽度固定,右侧宽度自适应(两种方法) 1.应用场景 左侧一个导航栏宽度固定,右侧内容根据用户浏览器窗口宽度进行自适应 2.思路 首先把这个问题分步解决,需要攻克以 ...
- GDAL中通过GDALDriver类的Create函数实现图像的保存
GDAL中除了读取各种类型的图像外,也可以实现对各种图像的保存操作,具体实现测试代码如下: int test_gadl_GDALDataset_write() { const char* image_ ...
- CF 1093 E. Intersection of Permutations
E. Intersection of Permutations 链接 题意: 给定两个序列,询问第一个排列的[l1,r1]和第二个排列[l2,r2]中有多少个共同的数,支持在第二个排列中交换两个数. ...
- XAF-如何在详细视图界面显示按钮(含示例项目下载)
默认情况下,指定了按钮的Category后,将在对应的按钮容器显示按钮.有时候,我们需要将按钮显示在详细视图中. 本示例源码 创建一个控制器,并填加按钮.设置好了所有ID.Caption后,给Cate ...
- Qt-QML-Canvas-雷达扫描仪表简单
使用QML实现的雷达仪表的实现,主要实现了余晖扫描的实现,其他的还是比较简单的,后面可能会加入目标标识,目前的功能仅仅是一个假的扫描雷达 来看代码 /* 作者:张建伟 时间:2018年4月27日 简述 ...
- 180726-InfluxDB基本概念小结
InfluxDB基本概念小结 InfluxDB作为时序数据库,与传统的关系型数据库相比而言,还是有一些区别的,下面尽量以简单明了的方式介绍下相关的术语概念 I. 基本概念 mysql influxdb ...
- Java EE平台介绍(译)
Java EE平台介绍 2.1 企业应用总览 这一部分将对企业应用及其设计和开发进行简单介绍. 就像之前说的,Java EE 平台是为了帮助开发者开发大规模.多层次.可伸缩.服务可靠.网络安全的应用而 ...
- Ztree结合jbox实现弹窗树结构
点击添加分类,弹出事项选择框为jbox <a href="#" id="down{{row.id}}" style="display:none& ...
- Eclipse添加Jquery和javascript的智能提示
使用Eclipse写Jquery和Javascript代码的时候,是没有智能提示的.我们可以使用一个插件来解决这个问题. 安装完成后,Eclipse会自动重启.重启之后,我们在项目上右键, 根据自 ...