题意: n个硬币摆成一排,问有连续m个正面朝上的硬币的序列种数。

很明显的DP题。定义状态dp[i][1]表示前i个硬币满足条件的序列种数。dp[i][0]表示前i个硬币不满足条件的序列种数。

那么显然有dp[i][1]=dp[i-1][1]*2+dp[i-1-m][0].

如果前i-1个硬币满足条件,那么第i个硬币无论怎么样都满足条件。如果前i-1-m个硬币不满足条件,那么只需要再添加m个正面朝上的硬币即可。

dp[i][0]=2^i-dp[i][1].

于是最后的答案就是dp[n][1].

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[N][], p[N]; void init(){p[]=; FO(i,,N) p[i]=p[i-]*%MOD;}
int main ()
{
int T, n, m;
scanf("%d",&T); init();
while (T--) {
scanf("%d%d",&n,&m); mem(dp,);
dp[m][]=; dp[m][]=((p[m]-dp[m][])%MOD+MOD)%MOD;
FO(i,,m) dp[i][]=p[i];
FOR(i,m+,n) dp[i][]=(dp[i-][]*+dp[i--m][])%MOD, dp[i][]=((p[i]-dp[i][])%MOD+MOD)%MOD;
printf("%lld\n",dp[n][]);
}
return ;
}

XTU 1233 Coins(DP)的更多相关文章

  1. xtuoj 1233 coins(dp)

    Coins Accepted : 120   Submit : 305 Time Limit : 1000 MS   Memory Limit : 65536 KB Coins Problem Des ...

  2. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  3. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  4. UVA 562 Dividing coins(dp + 01背包)

    Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...

  5. PAT 1068 Find More Coins[dp][难]

    1068 Find More Coins (30)(30 分) Eva loves to collect coins from all over the universe, including som ...

  6. HDU 1398 Square Coins(DP)

    Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  7. POJ 1742 Coins DP 01背包

    dp[i][j]表示前i种硬币中取总价值为j时第i种硬币最多剩下多少个,-1表示无法到达该状态. a.当dp[i-1][j]>=0时,dp[i][j]=ci; b.当j-ai>=0& ...

  8. uva--562Dividing coins +dp

    题意: 给定一堆硬币,然后将他们分成两部分,使得两部分的差值最小;输出这个最小的差值. 思路: 想了好久都没想到一个合适的状态转移方程.后面看了别人的题解后,才知道能够转成背包问题求解. 我们将全部的 ...

  9. CodeChef Cards, bags and coins [DP 泛型背包]

    https://www.codechef.com/problems/ANUCBC n个数字,选出其一个子集.求有多少子集满足其中数字之和是m的倍数.n $\le$ 100000,m $\le$ 100 ...

随机推荐

  1. SupperSocket深入浅出(二)

    如果还没有看SuperStock深入浅出(一) ,请先看 这一章,主要说下命令是如果运行的.刚开始的时候会发现拷别人的代码命令是可以运行的,在修改的过程中突然发现命令无效了? 这里什么原因?,我先把代 ...

  2. 13 tcp3次握手 4次释放 mac和ip 访问百度的过程

    1.mac地址和ip地址的不同 (传棒棒糖) 需求:192.168.1.1  ping 192.168.2.1 1):获取默认的网关mac地址 2)寻找下一个网关的mac地址 3)mac地址在变,寻找 ...

  3. 1009 产生数 2002年NOIP全国联赛普及组

    1009 产生数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 给出一个整数 n(n< ...

  4. DSP5509项目之用FFT识别钢琴音调(2)

    1. 本节主要是学习TLV320AIC32这个音频芯片,Easy5509 开发板上有一个语音编解码芯片 TLV320AIC23.TLV320AIC23 是一个高性能的多媒体数字语音编解码器,它的内部 ...

  5. javaweb(二十四)——jsp传统标签开发

    一.标签技术的API 1.1.标签技术的API类继承关系 二.标签API简单介绍 2.1.JspTag接口 JspTag接口是所有自定义标签的父接口,它是JSP2.0中新定义的一个标记接口,没有任何属 ...

  6. 测试Websocket建立通信,使用protobuf格式交换数据

    接到一个应用测试,应用实现主要使用websocket保持长链接,使用protobuf格式交换数据,用途为发送消息,需要我们测试评估性能,初步评估需要测试长链接数.峰值消息数以及长期运行稳定性 整体需求 ...

  7. Unity Lighting - Choosing a Color Space 选择色彩空间(四)

      Choosing a Color Space 选择色彩空间 In addition to selecting a rendering path, it’s important to choose ...

  8. 廖雪峰git笔记

    查看本地机子的在Git上的名字和邮箱:git config user.namegit config user.email 对所有仓库指定相同的用户名和Email地址:git config --glob ...

  9. Python基础入门(迭代器和生成器)

    1 Python迭代器 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束. 迭代器只能往前不会后退. 迭代器有两个基本的方法:iter() 和 ...

  10. Digital Roots:高精度

    C - Digital Roots Description The digital root of a positive integer is found by summing the digits ...