思路:

  求n的阶乘某个因子k的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通。其实n!可以表示成统一的方式。

  n!=(km)*(m!)*a   其中k是该因子,m=n/k,a是不含因子k的数的乘积

下面推导这个公式

n!=n*(n-1)*(n-2)*......3*2*1

=(k*2k*3k.....*mk)*a  (a是不含因子k的数的乘积,显然m=n/k;n!中必定包含1到m个k相乘)

=(km)*(1*2*3...*m)*a    

=km*m!*a       (统计时ans+=m,然后继续去求m!中含有的k因子个数)

接下来按照相同的方法可以求出m!中含有因子k的个数。

因此就可以求除n!中因子k的个数

举例:

  比如要求8!中因子2的个数。

  原式=8!=1*2*3*4*5*6*7*8

   第一步:对8除2(21),相当于将1到8中所有“第一个”2因子提取出来。 (此时原式=1*1*3*2*5*3*7*4)

  第二步:对8除4(22),相当于将1到8中所有”第二个“2因子提取出来。 (此时原式=1*1*3*1*5*3*7*2)

  第三步:对8除8(23),相当于将1到8中所有”第三个“2因子提取出来。 (此时原式=1*1*3*1*5*3*7*1)

  第四步:对8除16(24),结果为0,退出循环。

实现:

 int count(int n,int k)
{
int num=;
while(n)
{
num+=n/k;
n/=k;
}
return num;
}

求n!中因子k的个数的更多相关文章

  1. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  2. 求二叉树中第K层结点的个数

    一,问题描述 构建一棵二叉树(不一定是二叉查找树),求出该二叉树中第K层中的结点个数(根结点为第0层) 二,二叉树的构建 定义一个BinaryTree类来表示二叉树,二叉树BinaryTree 又是由 ...

  3. poj 2406 求字符串中重复子串的个数

    Sample Input abcdaaaaababab.Sample Output 1 //1个abcd4 //4个a3 //3个ab #include<stdio.h> #include ...

  4. More is better(MST)(求无向图中最大集合元素个数)

    More is better Time Limit:1000MS     Memory Limit:102400KB     64bit IO Format:%I64d & %I64u Sub ...

  5. 求x!在k进制下后缀零的个数(洛谷月赛T1)

    求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在 ...

  6. 寻找数列中第k大的数算法分析

    问题描述:给定一系列数{a1,a2,...,an},这些数无序的,现在求第k大的数. 看到这个问题,首先想到的是先排序,然后直接输出第k大的数,于是得到啦基于排序的算法 算法一: #include&l ...

  7. 求N!末尾的0的个数(找规律+递归)

    0\'s Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 计算整数n!(n的阶乘)末尾有多少个0. 输入 第一行输入一个数T代 ...

  8. N!中素因子p的个数 【数论】

    求N!中素因子p的个数,也就是N!中p的幂次 公式为:cnt=[n/p]+[n/p^2]+[n/p^3]+...+[n/p^k]; 例如:N=12,p=2 12/2=6,表示1~12中有6个数是2的倍 ...

  9. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

随机推荐

  1. Windows下python环境的安装

    1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\python27 3.配置环境变量 [右键计算机]-->[属性]-->[高 ...

  2. Django视图层详细介绍

    1 视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. ...

  3. 使用GUI工具高效构建你自己的Nuget包

    写这篇文章的原因是我在学习构建nuget包的时候,发现了一个官方推荐的GUI工具,而官方的工具介绍文章已经过时,一些地方和现在最新版本的工具有些差异,所以特意利用假期最后一个下午写下来,希望能帮助更多 ...

  4. Chrome 字体模糊解决

    新的电脑装了Chorm后发现字体很模糊,看起来比较累效果是这样的: 大多数都是说使用chrome://flags/中的DirectWrite开关来使其正常显示,我打开chrome://flags/没找 ...

  5. Appium+python HTML测试报告(2)——一份报告模板(转)

    (原文:https://www.cnblogs.com/fancy0158/p/10055003.html) 适用于python3: 下载地址: 英文:https://pan.baidu.com/s/ ...

  6. python环境通过selenium实现自动化web登陆及终端邀请

    自动化主要的就是识别对象,可以在网上搜到各种各样的方法,自行百度.下面仅附上一个简单的例子. 环境搭建参考如下链接: https://www.cnblogs.com/hepeilinnow/p/101 ...

  7. OpenWrt架设nginx php网站

    参考 http://www.vinoca.org/2012/05/31/openwrt%E6%9E%B6%E8%AE%BEnginxphp%E7%BD%91%E7%AB%99/ 一.安装相关包 opk ...

  8. git remote add origin错误

    如果输入$ Git remote add origin git@github.com:djqiang(github帐号名)/gitdemo(项目名).git 提示出错信息:fatal: remote ...

  9. 城市规模越大,工资、GDP、犯罪率越高:4.5星|《规模》

    规模 信息浓度非常高的一本书.篇幅也不小,纸书有568页,致谢与注释只占7%. 全书讲各种复杂的东西中存在的普遍规律:哺乳动物体重每增加一倍,心率降低25%:城市人口每增加一倍,加油站只增加85%:城 ...

  10. 关闭会声会影2018提示UEIP.dll找不到指定模块

    最近有一些会声会影2018用户反映在关闭后弹出UEIP.dll错误,不知道该怎么办才好,针对这个问题,小编下面为大家介绍下解决方法. 原因分析 出现这个错误跟会声会影安装路径有中文字符是密切相关的,导 ...