人脸识别(基于Caffe, 来自tyd)

人脸识别(判断是否为人脸)

LMDB(数据库, 为Caffe支持的分类数据源)

  • mkdir face_detect
  • cd face_detect
  • mkdir train val
  • mkdir train/{0,1}
  • mkdir val/{0,1}
  • 将人脸数据放到train/1val/1
  • 将非人脸数据放到val/0val/0
  • vim train.txt

0/xxx.jpg 0
1/xxx.jpg 1
  • vim val.txt

1/xxx.jpg 1
0/xxx.jpg 0
  • 拷贝Caffe自带的脚本根据上面的train.txt和val.txt制作LMDB数据源, 名为face_detect_lmdb.sh
# 修改部分
EXAMPLE=/home/jh/face_detect
DATA=/home/jh/face_detect
TOOLS=caffe安装目录/build/tools TRAIN_DATA_ROOT=/home/jh/face_detect/train/
VAL_DATA_ROOT=/home/jh/face_detect/val/ # 对输入的数据进行大小的调整, 大小的调整是要根据我们要使用的网络模型, 比如AlexNet或者VGG(速度慢)为227x227
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=227
RESIZE_WIDTH=227
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi # 接着修改GLOG_logtostderr那里的$DATA/train.txt, 这个为那个train.txt, $EXAMPLE/face_train_lmdb, 这个为生成的lmdb数据源的位置
# 下面也一样, 修改为val.txt, $EXAMPLE/face_val_lmdb, 这个为val的lmdb数据源生成的位置
  • 指定face_detect_lmdb.sh脚本文件, 如果那些face_val_lmdb已经存在则直接报错, 在执行过程中, 可能会出现Could not open ..., 这个没有关系, 执行的细节为, 先配置train, 在配置val
  • 因为数据源很大, 大约4W, 我们生成的lmdb文件为好几个GB, 再提一下, model大概为好几百MB

模型调优

  • 选择更深的网络, 改用VGG-16
  • 调整学习率
  • 图像增强

训练AlexNet网络(忘了, 去网上找AlexNet的结构图)

  • 对AlexNet进行简单的修改, 对最后的全连接层从1000改为2
  • 创建train.prototxt文件, 在里面写神经网络结构
  • 创建solver.prototxt文件
    • 指定test_iter, 测试多少个batch
    • test_interval: 1000, 迭代1000次进行测试
    • base_lr: 0.001: 基础学习率
    • max_iter: 10000: 最大迭代次数
    • gamma: 0.1
    • stepsize: 20000
    • display: 1000: 每1000次迭代显示一次
    • momentum: 0.9
    • weight_decay: 0.0005
    • snapshot: 10000: 每个10000次保存一次model
    • snapshot_prefix: "/path/to/model": 模型保存的目录
    • solver_mode: CPU: 使用CPU还是GPU

执行模型

  • 创建一个train.sh脚本

/path/to/caffe train --solver=/path/to/solver.prototxt
  • sh train.sh执行
  • 结束会生成一个模型文件(就一个, 就可以直接拿来用了)

网络训练速度限制

  • 网络大小
  • 输入数据的大小, 图片大小

人脸检测

  • Multi-Scale变换

    • 进行多个Scale变换->会导致有多个bbox, 后续需要NMS
    • 保存原始的bboxes, 在后续的时候通过scale factor映射到原始图形上
  • 滑动窗口

    • 多尺度的Scale变换, 对小人脸(如50x50)进行放大转为224x224, 对大脸进行缩小; 对原始图像进行多此缩放, 也就是不断的乘以scale factor知道到一个临界值, 变成一个图像金字塔

人脸识别(基于Caffe)的更多相关文章

  1. 基于人脸识别+IMDB-WIFI+Caffe的性别识别

    本文用记录基于Caffe的人脸性别识别过程.基于imdb-wiki模型做finetune,imdb-wiki数据集合模型可从这里下载:https://data.vision.ee.ethz.ch/cv ...

  2. 【Python+OpenCV】人脸识别基于环境Windows+Python3 version_3(Anaconda3)+OpenCV3.4.3安装配置最新版安装配置教程

    注:本次安装因为我要安装的是win10(64bit)python3.7与OpenCV3.4.3教程(当下最新版,记录下时间2018-11-17),实际中这个教程的方法对于win10,32位又或是64位 ...

  3. 人脸检测数据源制作与基于caffe构架的ALEXNET神经网络训练

    本篇文章主要记录的是人脸检测数据源制作与ALEXNET网络训练实现检测到人脸(基于caffe). 1.数据获取 数据获取: ① benchmark是一个行业的基准(数据库.论文.源码.结果),例如WI ...

  4. paper 97:异质人脸识别进展的资讯

    高新波教授团队异质人脸图像识别研究取得新突破,有望大大降低刑侦过程人力耗费并提高办案效率         近日,西安电子科技大学高新波教授带领的研究团队,在异质人脸图像识别研究领域取得重要进展,其对香 ...

  5. Python Face Recognition 实现人脸识别

    一.Face Recognition软件包 我们的人脸识别基于face_recognition库.face_recognition基于dlib实现,用深度学习训练数据,模型准确率高达99.38%. 人 ...

  6. OpenCV学习(38) 人脸识别(3)

                前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容: ...

  7. Python3利用Dlib19.7实现摄像头人脸识别的方法

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建 ...

  8. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  9. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

随机推荐

  1. 使用Array.prototype.indexOf()的几点注意

    对应indexOf这个方法,在日常开发中比较常见的应该是String.prototype.indexOf()方法,Array.prototype.indexOf()方法和其有很大的相似性,本文不想去描 ...

  2. [Elixir005] 查看指定数据的详细信息 i helper

    elixir在1.2后增加了一个新的特性i helper. 在iex shell中使用i可以查看任意数据的数据类型和详细描述 #查看变量描述 iex(1)> i {:test, "Th ...

  3. ActiveX 控件重绘无效问题,用CClientDC 而不是CPaintDC

    ActiveX 控件重绘子控件时,用Invalid()会出现无效的情况即不会更新界面. OnPaint 方法里,是用的 CPaintDC,经测试无效,后换CClientDC,发现可以,百度查他们的区别 ...

  4. 10-08常用的TIME和DATE函数以及各个函数对应的头文件

    系统时间和日期函数:     #include <time.h>     char *asctime(const struct tm *tm);//将tm中存放的信息转换为标准格式    ...

  5. ASP.NET Core 2.0 in Docker on Windows Containers

    安装Docker for Windows https://store.docker.com/editions/community/docker-ce-desktop-windows 要想将一个ASP. ...

  6. WPF里面多线程访问UI线程、主线程的控件

    如果出现以下错误:调用线程无法访问此对象,因为另一个线程拥有该对象. 你就碰到多线程访问UI线程.主线程的控件的问题了. 先占位.

  7. html中object和embed标签的区别

    ♦object定义一个嵌入的对象.请使用此元素向您的 XHTML 页面添加多媒体.此元素允许您规定插入 HTML 文档中的对象的数据和参数,以及可用来显示和操作数据的代码. ♦<object&g ...

  8. 初学Oracle

    初学Oracle,遇到了很多的问题,下载的是Oracle11g,没有找到合适的管理工具,所以用sql plus 创建表,以下是本人总结的一些sql plus的命令行的命令,希望对大家有用 与sql p ...

  9. HDU - 6315 吉司机线段树

    题意:给出a,b数组,区间上两种操作,给\(a[L,R]\)+1s,或者求\(\sum_{i=l}^{r}a_i/b_i\) 一看就知道是吉司机乱搞型线段树(低配版),暴力剪枝就好 维护区间a的最大值 ...

  10. Access network

    1       State transfering A•Mobility:开机-搜寻PLMN/CELL来发现自己在网络中的位置•Attach request•Auth request•Auth res ...