BNUOJ-1065或运算的简单解法
http://www.bnuoj.com/bnuoj/problem_show.php?pid=1065
-----------------------------------------------
#include<stdio.h>
int main()
{
int n,a[10001];
int T;
int i,j,k;
int ans=0;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ans=0;
for(i=0;i<n;++i)
scanf("%d",&a[i]);
for(i=0;i<n;++i)
for(j=0;j<n;++j)
ans+=(a[i]|a[j]);
printf("%d\n",ans);
}
return 0;
}
-----------------------------------------------
上面这个程序的时间复杂度就是O(n^2)的,输入规模增长到原来的n倍,运行时间将会是原来的n^2倍(两重循环内部的操作的次数变为原来的n^2倍)。这样的程序对于n高达10000的数据规模运行时间显然太长了,无法达到我们的要求。所以请你帮忙修改一下这个程序(只是两重循环的部分),降低算法的时间复杂度,但是程序的功能不能改变。
Input
每组数据的第一行有一个正整数 n (1≤n≤10000)。
接下来同一行有n个非负整数,每个数都不超过 2^16范围。两个数之间用空格分开。
Output
Sample Input
1
2 18467 6334
Sample Output
70239
思路:这道题目,必须感谢队友刘庆的想法......
比如现在有n(n==3)个数,分别是:2 5 7
将它们转化为二进制: 0010 0101 0111
那么,现在只看二进制,我们将这三个二进制加起来,但不进位,只统计二进制各个位上面的1的个数会得到:
1 1 1 1
0 2 2 2
这表示,二进制第三位没有1,第二位有2个1,第一位有2个1,第0位有2个1,这些位对应:2^3 2^2 2^1 2^0
那么会发现当2|2+2|5+2|7==2*2^0+n*2^1+2*2^2+0*2^3
5|2+5|5+5|7==n*2^0+2*2^1+n*2^2+0*2^3
7|2+7|5+7|7==n*2^0+n*2^1+n*2^2+0*2^3
发现没有,当一个数,比如7的二进制0111去或其他数的时候,若有一位本身是1,那么这一位或上与之对应的那一位(不管是0还是1)形成的新的数字的这一位都会是1;
就比如000110 与010000 或 变成010110 ,会发现只要有1的位,所形成新的二进制那一位也必然有1,那么当它与n个二进制数字或操作,所形成新的二进制数字,当原数字有1那么它对应的那一位也必然是1的.....这样,我们就只需要统计所以的二进制加起来不产生进位的情况下,每一位有多少个1就好 。
代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
struct node
{
int a[20];
int cnt;
int num;
}s[10005];
int t[20],f=0;
int p[20]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072};
int main()
{
int text;
scanf("%d",&text);
while(text--)
{
memset(s,0,sizeof(s));
memset(t,0,sizeof(t));
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i].num);
int tmp=s[i].num;
while(tmp>0)
{
int tmp1=s[i].cnt;
s[i].a[tmp1]=tmp%2;
tmp/=2;
s[i].cnt++;
}
for(int j=0;j<=15;j++)
if(s[i].a[j]==1)
t[j]++;
//for(int i=0;i<=15;i++)
//printf("%d",t[i]);
}
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=15;j++)
{
if(s[i].a[j]==1)
{
ans+=p[j]*n;
}
if(s[i].a[j]==0)
{
ans+=t[j]*p[j];
}
}
}
printf("%d\n",ans);
}
return 0;
}
BNUOJ-1065或运算的简单解法的更多相关文章
- c++复习一:复数运算的简单实现。
复数运算的简单实现. 程序很简单了.基本忘光了复数,重新了解了基本概念.如何在平面表示一个复数,复数的长度|x|=开根 a^2+b^2.和四则运算. 程序基本点: 封装和抽象: 1)封装成员数据,私有 ...
- js中,三元运算的简单应用(?:)
js中,三元运算的简单应用: var sinOrMul = ""; sinOrMul =(subType=="single")?("<span ...
- [PHP][位转换积累]之异或运算的简单加密应用
异或的符号是^.按位异或运算, 对等长二进制模式按位或二进制数的每一位执行逻辑按位异或操作. 操作的结果是如果某位不同则该位为1, 否则该位为0. xor运算的逆运算是它本身,也就是说两次异或同一个数 ...
- 关于PHP位运算的简单权限设计
写在最前面 最近想写一个简单的关于权限处理的东西,之前我也了解过用二进制数的位运算可以出色地完成这个任务.关于二进制数 的位运算,常见的就是“或.与.非”这三种简单运算了,当然,我也查看了下PHP手册 ...
- Java中的位运算及简单的算法应用介绍
众所周知,计算机底层是二进制.而java作为一门计算机编程语言,也对二进制的位运算提供了完整的支持. 在java中,int是32位的,也就是说可以用来实现32位的位运算.方便起见,我们一般用16进制对 ...
- java位运算之简单了解
1.十进制转化为二进制 将正整数转化为二进制的方法“除2取余,逆序排列”. 2.二进制转化为十进制 表示整数的二进制,第一位为标志位,0代表为正整数,位数从右开始,第一个位数为0,各位位数记作n,取各 ...
- c# 如何利用异或运算进行简单加密解密
利用“^”异或运算对字符串进行加密 原理:按位做“异或”运算是->位值相同得1,不同得0,如下计算 1 ^ 1 = 0 1 ^ 0 = 1 0 ^ 1 = 1 0 ^ 0 = 0 例如: < ...
- VS Code mac版全局搜索失效最简单解法
网上百度到的一些说法,说是添加以下命令行 "search.exclude": { "system/": true, "!/system/**/*.ps ...
- 使用redux简单的实现加法运算(简单的状态改变)
描述该做啥?(action)!具体怎么做(reducer)!统一规划(store:包含reducer+所有的state) 上代码:index.ios.js import React, { Compon ...
随机推荐
- eclipse 关闭web项目无用校验
eclipse 关闭web项目无用校验 CreateTime--2018年4月8日16:21:01 Author:Marydon 1.关闭javascript校验 1.1 切换到视图Navigat ...
- 优股社区logo
- Linux下PHP5.5编译参数详解
一.配置参数 ./configure --prefix=/data/app/php --with-config-file-path=/etc --with-mysql=/usr\ --with-mys ...
- PHP-PHP核心技术与最佳实践阅读
1.对象的实质: 对象就是数据, 对象本身不包含方法, 但是对象有一个"指针"指向一个类, 这个类里可以有方法 2.反射是指在PHP运行状态中, 扩展分析PHP程序, 导出或者提取 ...
- 关于远程访问Oracle数据库的设置(共享数据库)
写在前面: 需求描述: 我笔记本上安装了oracle数据库, 现在同事也想连接这个数据库. 也就是设置为别人能远程访问我本地的数据库. 思路: 通过在我笔记本WiFi共享,别人连接该W ...
- HDUOJ --2544最短路(基础)
输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几 ...
- HDUOJ---The number of divisors(约数) about Humble Numbers
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- Pandas中DataFrame修改列名
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...
- Java实现文件自动打包成zip并下载的代码
import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java. ...
- android中调用系统的发送短信、发送邮件、打电话功能
1 调用发送短信功能: Uri smsToUri = Uri.parse("smsto:"); Intent sendIntent = new Intent(Intent.ACT ...