C - 3 Steps


Time limit : 2sec / Memory limit : 256MB

Score : 500 points

Problem Statement

Rng has a connected undirected graph with N vertices. Currently, there are M edges in the graph, and the i-th edge connects Vertices Ai and Bi.

Rng will add new edges to the graph by repeating the following operation:

  • Operation: Choose u and v (uv) such that Vertex v can be reached by traversing exactly three edges from Vertex u, and add an edge connecting Vertices u and v. It is not allowed to add an edge if there is already an edge connecting Vertices u and v.

Find the maximum possible number of edges that can be added.

Constraints

  • 2≤N≤105
  • 1≤M≤105
  • 1≤Ai,BiN
  • The graph has no self-loops or multiple edges.
  • The graph is connected.

Input

Input is given from Standard Input in the following format:

N M
A1 B1
A2 B2
:
AM BM

Output

Find the maximum possible number of edges that can be added.


Sample Input 1

Copy
6 5
1 2
2 3
3 4
4 5
5 6

Sample Output 1

Copy
4

If we add edges as shown below, four edges can be added, and no more.


Sample Input 2

Copy
5 5
1 2
2 3
3 1
5 4
5 1

Sample Output 2

Copy
5

Five edges can be added, for example, as follows:

  • Add an edge connecting Vertex 5 and Vertex 3.
  • Add an edge connecting Vertex 5 and Vertex 2.
  • Add an edge connecting Vertex 4 and Vertex 1.
  • Add an edge connecting Vertex 4 and Vertex 2.
  • Add an edge connecting Vertex 4 and Vertex 3.

//Atcoder的题目还是有新意啊,可以收获不少

题意: n 个点 m 条边, 组成一个无向连通图,重复操作, 如果 a 点到 b 点距离为 3 ,并且没有连回 a ,就添加一条 a - b 的边。没有自环,问最多能添加几条边。

分析可知,如有图有奇数环,必然可加成完全图

如果图是二分图,则会变成完全二分图,

否则最终变为完全图

二分图dfs染色即可

 #include <bits/stdc++.h>
using namespace std;
# define LL long long
# define pr pair
# define mkp make_pair
# define lowbit(x) ((x)&(-x))
# define PI acos(-1.0)
# define INF 0x3f3f3f3f3f3f3f3f
# define eps 1e-
# define MOD inline int scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
# define MX
/**************************/
int n,m;
vector<int> G[MX];
int clo[MX]; bool check()
{
bool ok=;
for (int i=;i<=n;i++)
{
if (G[i].size()>=)
{
if (ok) return ;
ok=;
}
}
return ;
} int dfs(int p,int s,int pre)
{
clo[p] = s%+;
for (int i=;i<G[p].size();i++)
{
int v = G[p][i];
if (v==pre) continue;
if (!clo[v])
{
if (!dfs(v,s+,p))
return ;
}
else if(clo[v]==clo[p]) return ;
}
return ;
} int bipartite()
{
memset(clo,,sizeof(clo));
if (!dfs(,,-)) return ;
return ;
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for (int i=;i<=n;i++) G[i].clear(); for (int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
if (!check())
printf("0\n");
else if (!bipartite())
printf("%lld\n",(LL)n*(n-)/-m);
else
{
LL b=,w=;
for (int i=;i<=n;i++)
{
if (clo[i]==) b++;
else w++;
}
printf("%lld\n",b*w-m);
}
}
return ;
}

3 Steps(二分图)的更多相关文章

  1. Atcoder CODE FESTIVAL 2017 qual B C - 3 Steps 二分图

    题目链接 题意 给定一个无向图,\(n\)个点,\(m\)条边(\(n,m\leq 1e5\)). 重复如下操作: 选择相异的两点u,v满足从点u出发走三条边恰好能到达点v.在这样的u,v点对之间添一 ...

  2. [AtCoder Code Festival 2017 QualB C/At3574] 3 Steps - 二分图染色,结论

    给你一个n个点m条边的无向图,进行以下操作 如果存在两个点u和v,使得从u走三步能恰好到达v,那么在u和v之间连接一条边 重复这个操作直到不能再连接新的边,问最后有多少条边? n, m <= 1 ...

  3. CODE FESTIVAL 2017 qual B C - 3 Steps【二分图】

    CODE FESTIVAL 2017 qual B C - 3 Steps 题意:给定一个n个结点m条边的无向图,若两点间走三步可以到,那么两点间可以直接连一条边,已经有边的不能连,问一共最多能连多少 ...

  4. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  5. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  6. 2018.06.27Going Home(二分图匹配)

    Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24716 Accepted: 12383 Descript ...

  7. POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏

    Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...

  8. POJ 2195 Going Home 【二分图最小权值匹配】

    传送门:http://poj.org/problem?id=2195 Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  9. HDU 1533:Going Home(KM算法求二分图最小权匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 Going Home Problem Description   On a grid map there ...

随机推荐

  1. OpenERP为form和tree视图同时指定view_id的方法

    Odoo,OpenERP中文网 / 2014-07-16 文所说的是关于OpenERP中同一个对象(同名继承)使用view_id来指定form和tree视图的方法,由于官方文档中Views and E ...

  2. MySQL触发器 trigger之after与before区分

    after:是先完毕数据的增删改,然后再触发.触发的语句晚于监视的增删改,无法影响前面的增删修改作.也就是说先插入订单记录.再更新商品数量.当商品数量少于订单数量时造成爆库. before:先完毕触发 ...

  3. LoadRunner+Java接口性能测试

    想必各位小伙伴们会对LR还可以调用java感到好奇,之前我也这么一直认为LR只支持C语言.其实LR脚本支持的语言有:C.Java.Visual Basic.VbScript.JavaScript,只不 ...

  4. ajax请求web容器控制超时

    1.项目用到超时控制,针对ajax请求超时,可以参照如下解决方案 tomcat容器 web.xml 中配置 <session-config> <session-timeout> ...

  5. 原生js实现文字无缝向上滚动效果

    在网上查找到了一个实现文字无缝向上滚动效果的源码,结果发现运行有问题,于是就稍加改动,实现了js无缝向上滚动的效果. <script> window.onload = roll(50); ...

  6. Atitit.研发管理---api版本号策略与版本控制

    Atitit.研发管理---api版本号策略与版本控制 1. 1.2.1版本概述1 2. 3主版本号策略2 3. 1PATCH版本策略2 3.1. 1.2.2.1次版本号策略2 表3-1 APR中支持 ...

  7. Atitit. visual studio vs2003 vs2005 vs2008  VS2010 vs2012 vs2015新特性 新功能.doc

    Atitit. visual studio vs2003 vs2005 vs2008  VS2010 vs2012 vs2015新特性 新功能.doc 1.1. Visual Studio2 1.2. ...

  8. Closure闭包示例

    var foo = function(){ var cnt = 0; return function(){ return cnt++; }; }; var closure = foo(); conso ...

  9. waterfall.js

    jq-waterfall是一款仿Pinterest网站的响应式无限动态加载图片瀑布流特效jQuery插件.该瀑布流特效使用ajax调用来动态加载图片,达到无限加载的效果.它使用简单,兼容性好,值得推荐 ...

  10. imx6用文件io操作gpio

    具体请参考: http://blog.csdn.net/u014213012/article/details/53140781 这里要注意的是: 要让linux支持文件io方式操作gpio,首先驱动必 ...