bzoj 1005: [HNOI2008]明明的烦恼 树的prufer序列+万进制
思路:
这道题需要前置知识prufer编码,这篇博客对prufer编码和这道题的分析写的很好。
这里主要讲一些对大数阶乘的分解,一个办法当然是用高精度,上面这篇博客用的是java,还有一个办法是用万进制,但是普通的万进制只能计算乘法,而这里需要用到除法,又不能用逆元(因为没有取模)怎么办呢?
我们发现,上面那篇博客得到的式子是一个组合数的式子,所以必然是整数,如果把分子和分母共同进行质因子分解,那么上面的质因子的数量必然大于下面的,所以我们就把每一个阶乘和数字进行质因子分解,然后对分解出来的质因子用万进制处理(我实际上用的是百万进制)。
代码debug的时候有个很小的地方错了,看了一遍hzwer聚聚的代码,,然后就变默写了。。
#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
typedef long long ll;
inline int read()
{
int x=,t=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-')t=-,ch=getchar();
while(ch<=''&&ch>='')x=x*+ch-,ch=getchar();
return x*t;
}
const int maxn=;
int p=;
int ans[maxn],num[maxn],pri[maxn],cnt,l,tot;
int d[maxn],n,sum;
inline bool judge(int x){
for(int i=;i<=sqrt(x);i++){
if(x%i==)return false;
}
return true;
}
void prim(){
for(int i=;i<=;i++)
{
if(judge(i))pri[++cnt]=i;
}
}
void resolve(int x,int w){
for(int k=;k<=x;k++)
{
int a=k;
for(int i=;i<=cnt;i++){
if(a<=)break;
while(a%pri[i]==){
num[i]+=w;
a/=pri[i];
}
}
}
}
void mul(int x){
for(int i=;i<=l;i++)ans[i]*=x;
for(int i=;i<=l;i++){
ans[i+]+=ans[i]/p;
ans[i]%=p;
}
while(ans[l+]>){
l++;
ans[l+]+=ans[l]/p,ans[l]%=p;
}
}
void print()
{
for(int i=l;i>;i--)
if(i==l)printf("%d",ans[i]);
else printf("%06d",ans[i]);
}
int main(){
prim();
cin>>n;
if(n==){
int x;
cin>>x;
if(!x)printf("1\n");
else puts("");
return ;
}
int flag=;
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]!=-){
if(d[i]==)flag=;
tot++;
sum+=d[i]-;
}
}
if(sum>n-||flag){
puts("");
return ;
}
resolve(n-,);
resolve(n--sum,-);
for(int i=;i<=n;i++){
if(d[i]!=-){
resolve(d[i]-,-);
}
}
ans[++l]=;
for(int i=;i<=cnt;i++){
while(num[i]--){
mul(pri[i]);
}
}
for(int i=;i<=n--sum;i++){
mul(n-tot);
}
print();
return ;
}
bzoj 1005: [HNOI2008]明明的烦恼 树的prufer序列+万进制的更多相关文章
- BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)
		
题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...
 - BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
		
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
 - bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
		
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
 - BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
		
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
 - BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
		
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
 - BZOJ 1005 [HNOI2008]明明的烦恼  purfer序列,排列组合
		
1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...
 - bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
		
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
 - BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)
		
http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...
 - BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
		
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
 
随机推荐
- CURL以 POST 请求链接的方式   初始化一个cURL会话来获取一个网页
			
/** *POST URL */ function posturl($URL,$data) { $ch = curl_init(); // 创建一个新cURL资源 curl_setopt($ch,CU ...
 - SaeMail使用示例
			
SAE的官方文档:http://apidoc.sinaapp.com/sae/SaeMail.html SaeMail类的具体实现:http://apidoc.sinaapp.com/__fileso ...
 - ROS源码解读(一)--局部路径规划
			
博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...
 - ssh -X前设置DISPLAY=localhost:0
			
如果是在windows上用XMing做XServer,前面的localhost不能省,否则会被当作一个unix domain socket,而XMing没有实现这个功能,所以会出错 connect / ...
 - 屌爆的xamarin,一人单挑google/apple/windows
			
一个IDE就把3大手机平台全包了: android:自带模拟器xamarin player,速度堪比genymotion. ios:需要一台mac机辅助,一旦配好后可全程脱离,连ios模拟器都给镜像到 ...
 - Luogu 4198 楼房重建
			
BZOJ 2957 挺妙的题. 先把题目中的要求转化为斜率,一个点$(x, y)$可以看成$\frac{y}{x}$,这样子我们要求的就变成了一个区间内一定包含第一个值的最长上升序列. 然后把这个序列 ...
 - UOJ 176 新年的繁荣
			
挺妙的解法. 发现边权很小,我们可以考虑从大到小枚举边权来进行$kruskal$算法,这样子对于每一个边权$i$,我们只要枚举$0 \leq j < m$,找到一个点使它的点权为$i | 2^j ...
 - Servlet入门第一天
			
1. 使用 JavaEE 版的 Eclipse 开发动态的 WEB 工程(JavaWEB 项目) 1). 把开发选项切换到 JavaEE 2). 可以在 Window -> Show View ...
 - (转)使用Jquery+EasyUI进行框架项目开发案例讲解之一---员工管理源码分享
			
原文地址:http://www.cnblogs.com/huyong/archive/2013/09/24/3334848.html 使用Jquery+EasyUI 进行框架项目开发案例讲解之一 员工 ...
 - 记.gitignore的一次惊心动魄
			
git rm -r --cached . #清除缓存 git add . #重新trace file git commit -m "update .gitignore" #提交和 ...