自旋锁、排队自旋锁、MCS锁、CLH锁
转载自:http://coderbee.net/index.php/concurrent/20131115/577
自旋锁(Spin lock)
自旋锁是指当一个线程尝试获取某个锁时,如果该锁已被其他线程占用,就一直循环检测锁是否被释放,而不是进入线程挂起或睡眠状态。
自旋锁适用于锁保护的临界区很小的情况,临界区很小的话,锁占用的时间就很短。
简单的实现
import java.util.concurrent.atomic.AtomicReference;
public class SpinLock {
private AtomicReference<Thread> owner = new AtomicReference<Thread>();
public void lock() {
Thread currentThread = Thread.currentThread();
// 如果锁未被占用,则设置当前线程为锁的拥有者
while (owner.compareAndSet(null, currentThread)) {
}
}
public void unlock() {
Thread currentThread = Thread.currentThread();
// 只有锁的拥有者才能释放锁
owner.compareAndSet(currentThread, null);
}
}
SimpleSpinLock里有一个owner属性持有锁当前拥有者的线程的引用,如果该引用为null,则表示锁未被占用,不为null则被占用。
这里用AtomicReference是为了使用它的原子性的compareAndSet方法(CAS操作),解决了多线程并发操作导致数据不一致的问题,确保其他线程可以看到锁的真实状态。
缺点
- CAS操作需要硬件的配合;
- 保证各个CPU的缓存(L1、L2、L3、跨CPU Socket、主存)的数据一致性,通讯开销很大,在多处理器系统上更严重;
- 没法保证公平性,不保证等待进程/线程按照FIFO顺序获得锁。
Ticket Lock
Ticket Lock 是为了解决上面的公平性问题,类似于现实中银行柜台的排队叫号:锁拥有一个服务号,表示正在服务的线程,还有一个排队号;每个线程尝试获取锁之前先拿一个排队号,然后不断轮询锁的当前服务号是否是自己的排队号,如果是,则表示自己拥有了锁,不是则继续轮询。
当线程释放锁时,将服务号加1,这样下一个线程看到这个变化,就退出自旋。
简单的实现
import java.util.concurrent.atomic.AtomicInteger;
public class TicketLock {
private AtomicInteger serviceNum = new AtomicInteger(); // 服务号
private AtomicInteger ticketNum = new AtomicInteger(); // 排队号
public int lock() {
// 首先原子性地获得一个排队号
int myTicketNum = ticketNum.getAndIncrement();
// 只要当前服务号不是自己的就不断轮询
while (serviceNum.get() != myTicketNum) {
}
return myTicketNum;
}
public void unlock(int myTicket) {
// 只有当前线程拥有者才能释放锁
int next = myTicket + 1;
serviceNum.compareAndSet(myTicket, next);
}
}
缺点
Ticket Lock 虽然解决了公平性的问题,但是多处理器系统上,每个进程/线程占用的处理器都在读写同一个变量serviceNum ,每次读写操作都必须在多个处理器缓存之间进行缓存同步,这会导致繁重的系统总线和内存的流量,大大降低系统整体的性能。
下面介绍的CLH锁和MCS锁都是为了解决这个问题的。
MCS 来自于其发明人名字的首字母: John Mellor-Crummey和Michael Scott。
CLH的发明人是:Craig,Landin and Hagersten。
MCS锁
MCS Spinlock 是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,直接前驱负责通知其结束自旋,从而极大地减少了不必要的处理器缓存同步的次数,降低了总线和内存的开销。
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
public class MCSLock {
public static class MCSNode {
MCSNode next;
boolean isLocked = true; // 默认是在等待锁
}
volatile MCSNode queue ;// 指向最后一个申请锁的MCSNode
private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER = AtomicReferenceFieldUpdater
. newUpdater(MCSLock.class, MCSNode. class, "queue" );
public void lock(MCSNode currentThread) {
MCSNode predecessor = UPDATER.getAndSet(this, currentThread);// step 1
if (predecessor != null) {
predecessor.next = currentThread;// step 2
while (currentThread.isLocked ) {// step 3
}
}
}
public void unlock(MCSNode currentThread) {
if ( UPDATER.get( this ) == currentThread) {// 锁拥有者进行释放锁才有意义
if (currentThread.next == null) {// 检查是否有人排在自己后面
if (UPDATER.compareAndSet(this, currentThread, null)) {// step 4
// compareAndSet返回true表示确实没有人排在自己后面
return;
} else {
// 突然有人排在自己后面了,可能还不知道是谁,下面是等待后续者
// 这里之所以要忙等是因为:step 1执行完后,step 2可能还没执行完
while (currentThread.next == null) { // step 5
}
}
}
currentThread.next.isLocked = false;
currentThread.next = null;// for GC
}
}
}
CLH锁
CLH锁也是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋。
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
public class CLHLock {
public static class CLHNode {
private boolean isLocked = true; // 默认是在等待锁
}
@SuppressWarnings("unused" )
private volatile CLHNode tail ;
private static final AtomicReferenceFieldUpdater<CLHLock, CLHNode> UPDATER = AtomicReferenceFieldUpdater
. newUpdater(CLHLock.class, CLHNode .class , "tail" );
public void lock(CLHNode currentThread) {
CLHNode preNode = UPDATER.getAndSet( this, currentThread);
if(preNode != null) {//已有线程占用了锁,进入自旋
while(preNode.isLocked ) {
}
}
}
public void unlock(CLHNode currentThread) {
// 如果队列里只有当前线程,则释放对当前线程的引用(for GC)。
if (!UPDATER .compareAndSet(this, currentThread, null)) {
// 还有后续线程
currentThread. isLocked = false ;// 改变状态,让后续线程结束自旋
}
}
}
CLH锁 与 MCS锁 的比较
下图是CLH锁和MCS锁队列图示: 
差异:
- 从代码实现来看,CLH比MCS要简单得多。
- 从自旋的条件来看,CLH是在本地变量上自旋,MCS是自旋在其他对象的属性。
- 从链表队列来看,CLH的队列是隐式的,CLHNode并不实际持有下一个节点;MCS的队列是物理存在的。
- CLH锁释放时只需要改变自己的属性,MCS锁释放则需要改变后继节点的属性。
注意:这里实现的锁都是独占的,且不能重入的。
自旋锁、排队自旋锁、MCS锁、CLH锁的更多相关文章
- JUC 并发编程--12, 使用AtomicInteger 实现一把锁(排队自旋锁), 代码演示
前面 使用自旋锁实现了一把锁,(请看 第5篇) volatile 三大特性: 可见性, 不保证原子性, 禁止指令重排 为了解决 volatile不保证原子性的问题, 引入了原子类, AtomicInt ...
- 并发编程——详解 AQS CLH 锁
从 acquire 方法开始 -- 获取 为什么 AQS 需要一个虚拟 head 节点 reelase 方法如何释放锁 总结 前言 AQS 是 JUC 中的核心,其中封装了资源的获取和释放,在我们之前 ...
- 可重入锁 公平锁 读写锁、CLH队列、CLH队列锁、自旋锁、排队自旋锁、MCS锁、CLH锁
1.可重入锁 如果锁具备可重入性,则称作为可重入锁. ========================================== (转)可重入和不可重入 2011-10-04 21:38 这 ...
- Java锁之自旋锁详解
锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) .这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类 ...
- CLH锁 、MCS锁
一.引文 1.1 SMP(Symmetric Multi-Processor) 对称多处理器结构,指服务器中多个CPU对称工作,每个CPU访问内存地址所需时间相同.其主要特征是共享,包含对CPU,内存 ...
- MCS锁和CLH锁
CLH锁:自旋锁,在上一个节点上等待,先上代码: public class CLHLock { /** * 保证原子性操作 * */ private AtomicReference<Node&g ...
- synchronized底层实现原理&CAS操作&偏向锁、轻量级锁,重量级锁、自旋锁、自适应自旋锁、锁消除、锁粗化
进入时:monitorenter 每个对象有一个监视器锁(monitor).当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:1 ...
- 读书摘要:第七章 闩Suan锁和自旋锁
摘要: 1.闩锁就像是内存上的锁,随着越来越多的线程参与进来,他们争相访问同一块内存,导致堵塞.2.自旋锁就是闩锁,不同之处是如果访问的内存不可用,它将继续检查轮询一段时间.3.拴锁和自旋锁是我们无法 ...
- JVM中锁优化,偏向锁、自旋锁、锁消除、锁膨胀
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt364 本文将简单介绍HotSpot虚拟机中用到的锁优化技术. 自旋锁 互斥同 ...
随机推荐
- ubuntu配置机器学习环境(一) ubuntu安装
第一部分:Ubuntu14.04安装 Step :安装Ubuntu Step 1.1:准备安装U盘 首先到官网下载Ubuntu的镜像,我使用的是Ubuntu 14.04.3的ISO. 然后使用Ultr ...
- 如何在WIN7_64环境下安装Oracle10g_64位版本
转载请注明出处http://www.cnblogs.com/SharpL/p/4338638.html 1.如果之前安装过Oracle软件,建议完全卸载(究竟有没有必要_不知道_我是这么做的) 2.清 ...
- 反向代理服务器——nginx
一.概述 先来看百度百科的介绍: Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.其特点是占有内存少,并发能力强 ...
- js 邮箱和手机号码验证
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- struts2官方 中文教程 系列九:Debugging Struts
介绍 在Struts 2 web应用程序的开发过程中,您可能希望查看由Struts 2框架管理的信息.本教程将介绍两种工具,您可以使用它们来查看.一个工具是Struts 2的配置插件,另一个是调试拦截 ...
- react children技巧总结
在使用该技巧时,建议先看一下相关的知识,点我查看 假如使用该属性时,想把父组件的所有属性及部分方法传递给子组件,该怎么办呢?看代码 const Child = ({ doSomething, valu ...
- 「日常训练」「小专题·USACO」 Broken Necklace(1-2)
题意 圆形链条,打断一处可以形成一条链.问在哪个地方开始打断,能够形成最大的连续颜色(白色视作同样的颜色)? 分析 说起来很高级,但是我们实际上并不需要穷举打断的地方,只需要把串重复三回啊三回.然后从 ...
- Tuxedo 通讯方式解析
本节根据tuxedo自带samples的例子,让其运行起来.并通过这个例子,深入的理解tuxedo的通讯方式. 进入tuxedo的安装目录,samples目录下自带了一些例子 [root@localh ...
- Assetbundle1
AssetBundle运行时加载:来自文件就用CreateFromFile(注意这种方法只能用于standalone程序)这是最快的加载方法也可以来自Memory,用CreateFromMemory( ...
- python基础篇 05字典
本节主要内容:1. 字典的简单介绍2. 字典增删改查和其他操作3. 字典的嵌套 一. 字典的简单介绍:字典(dict)是python中唯一的一个映射类型.他是以{ }括起来的键值对组成. 在dict中 ...