方格取数

Time Limit: 5 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  在一个n*n的方格里,每个格子里都有一个正整数。从中取出若干数,使得任意两个取出的数所在格子没有公共边,且取出的数的总和尽量大。

Input

  第一行一个数n;接下来n行每行n个数描述一个方阵

Output

  仅一个数,即最大和

Sample Input

  2
  1 2
  3 5

Sample Output

  6

HINT

  n<=30

Main idea

  给定一个矩阵,取了一个点就不能取上下左右的点了,求能取出的最大价值。

Solution

  求的显然是最大权独立集,最大权独立集=总权-最小权覆盖集,对于最小权覆盖集我们用最小割来解。

  由于取了一个点,不能取上下左右的点,即i+-1 or j+-1,那么显然是一个二分图,根据奇偶分类。

  然后就是一个最小割的模型,我们左边的点向上下左右的点连边,容量为INF(必然不是割),然后跑最大流即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<map>
using namespace std; const int ONE=;
const int TWO=;
const int INF=; int n,m;
int tot=;
int res,tou,wei,S,T;
int Dep[ONE],q[TWO],ans;
int a[ONE][ONE],PD[ONE][ONE],BI[ONE][ONE];
int next[TWO],first[TWO],go[TWO],w[TWO];
int E[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Add(int u,int v,int z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; w[tot]=;
} int Bfs()
{
memset(Dep,,sizeof(Dep));
q[]=;
tou=; wei=; Dep[]=;
for(int u=;u<=n*n;u++) E[u]=first[u];
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(Dep[v] || !w[e])continue;
Dep[v]=Dep[u]+;
q[++wei]=v;
}
}
return (Dep[T]>);
} int Dfs(int u,int Limit)
{
if(u==T || !Limit) return Limit;
int flow=,f;
for(int &e=E[u];e;e=next[e])
{
int v=go[e];
if(Dep[v]!=Dep[u]+ || !w[e]) continue;
f=Dfs(v,min(Limit,w[e]));
w[e]-=f;
w[e^]+=f;
Limit-=f;
flow+=f;
if(!Limit)break;
}
return flow;
} void Build(int i,int j)
{
if(BI[i-][j]) Add(BI[i][j],BI[i-][j],INF);
if(BI[i][j-]) Add(BI[i][j],BI[i][j-],INF);
if(BI[i+][j]) Add(BI[i][j],BI[i+][j],INF);
if(BI[i][j+]) Add(BI[i][j],BI[i][j+],INF);
} int main()
{
n=get();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
a[i][j]=get();
ans+=a[i][j];
if( i%!=j% ) PD[i][j]=;
BI[i][j]=++tot;
} S=; T=n*n+; tot=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(PD[i][j]) Add(S,BI[i][j],a[i][j]);
else Add(BI[i][j],T,a[i][j]);
if(PD[i][j]) Build(i,j);
} while(Bfs())
res+=Dfs(,INF); printf("%d",ans-res);
}

【BZOJ1475】方格取数 [最小割]的更多相关文章

  1. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  2. [BZOJ1475]方格取数 网络流 最小割

    1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 512[Submit][Status][Discuss] ...

  3. HDU 3657 Game(取数 最小割)经典

    Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  4. BZOJ1324Exca王者之剑&BZOJ1475方格取数——二分图最大独立集

    题目描述   输入 第一行给出数字N,M代表行列数.N,M均小于等于100 下面N行M列用于描述数字矩阵 输出 输出最多可以拿到多少块宝石 样例输入 2 2 1 2 2 1 样例输出 4   题意就是 ...

  5. bzoj1475:方格取数

    传送门 最小割,这也是个经典题了,当初学最小割时没学会,这次算是理解了,首先二分图染色,将整个图分成黑色点和白色点,由于相邻的格子不能同时选,一个黑点一定对应四个白点,也就是我们只能选择这个黑点或者四 ...

  6. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  8. hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割

    题意:方格取数,如果取了相邻的数,那么要付出一定代价.(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪...) 建图:  对于相邻问题,经典方法:奇偶建立二分图.对于相邻两点连边2 ...

  9. HDU1569 方格取数(2) —— 二分图点带权最大独立集、最小割最大流

    题目链接:https://vjudge.net/problem/HDU-1569 方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

随机推荐

  1. centos redis 安装 php-redis扩展安装 及使用

    前提:centos7.php7 安装redis-server 1:yum install redis 编译安装php-redis 扩展 1:下载编译安装 wget https://codeload.g ...

  2. 一个极为简单的requirejs实现

    require和 sea的源码分析,我之前的博客有写过, 今天我想分享的是一个很简单的核心代码(不带注释和空行大概60行), 没有容错判断. require.js require函数实现用一句话概括: ...

  3. Oracle 学习笔记(四)

    ​oracle表查询 使用逻辑操作符号  查询工资高于 500 或者是岗位为 MANAGER 的雇员,同时还要满足他们的姓名首字母为大写 J SELECT * FROM emp WHERE (sal ...

  4. 关于Vue脚手架写法的问题

    问题描述: main.js import Vue from 'vue' import App from './App' /* eslint-disable no-new */ new Vue({ el ...

  5. Jenkins - 持续集成部署

    1. 安装svn:用于checkout源码 (1)yum 安装:yum -y install subversion (2)查看svn版本信息:svnserver --version 2. 安装jdk ...

  6. xadmin站点管理面样样式控制

    xadmin可以使用的页面样式控制基本与Django原生的admin一直. list_display 控制列表展示的字段 search_fields 控制可以通过搜索框搜索的字段名称,xadmin使用 ...

  7. (原创)白话KMP算法(续)

    第二章:KMP改良算法 第一章里面我们讲完了KMP算法的next数组实现法,回忆一下其实最重要的内容无非就是一.理解 i 指针无用回溯的意义,二.理解 j 指针的定位和模式串中每个元素重复度的关系,三 ...

  8. win10激活方法-专业版

    该教程操作思路,Win10家庭版升为专业版,然后激活版本 首先,进入设置→关于看到如下页面: 接着,进入实操阶段: 第一步   在激活版面输入密匙   ( 把家庭版升级为专业版 ) DR9VN-GF3 ...

  9. 完整Android开发基础入门博客专栏

    博客地址:http://www.runoob.com/w3cnote/android-tutorial-contents.html

  10. JavaSE复习(四)File类与IO流

    File类 构造方法 public File(String pathname) :通过将给定的路径名字符串转换为抽象路径名来创建新的 File实例. public File(String parent ...