codefoeces problem 671D——贪心+启发式合并+平衡树
Yusland consists of n intersections connected by n - 1 bidirectional roads. One can travel from any intersection to any other intersection using only these roads.
There is only one road repairing company in town, named "RC company". Company's center is located at the intersection 1. RC company doesn't repair roads you tell them. Instead, they have workers at some intersections, who can repair only some specific paths. The i-th worker can be paid ci coins and then he repairs all roads on a path from ui to some vi that lies on the path from ui to intersection 1.
Mayor asks you to choose the cheapest way to hire some subset of workers in order to repair all the roads in Yusland. It's allowed that some roads will be repaired more than once.
If it's impossible to repair all roads print - 1.
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300 000) — the number of cities in Yusland and the number of workers respectively.
Then follow n−1 line, each of them contains two integers xi and yi (1 ≤ xi, yi ≤ n) — indices of intersections connected by the i-th road.
Last m lines provide the description of workers, each line containing three integers ui, vi and ci (1 ≤ ui, vi ≤ n, 1 ≤ ci ≤ 109). This means that the i-th worker can repair all roads on the path from vi to ui for ci coins. It's guaranteed that vi lies on the path from ui to 1. Note that vi and ui may coincide.
If it's impossible to repair all roads then print - 1. Otherwise print a single integer — minimum cost required to repair all roads using "RC company" workers.
6 5
1 2
1 3
3 4
4 5
4 6
2 1 2
3 1 4
4 1 3
5 3 1
6 3 2
8
In the first sample, we should choose workers with indices 1, 3, 4 and 5,
some roads will be repaired more than once but it is OK.
The cost will be equal to 2 + 3 + 1 + 2 = 8 coins.
————————————————————————————————————————
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#define LL long long
const int M=3e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL ans;
int n,m;
int f[M];
int find(int x){while(f[x]!=x) x=f[x]=f[f[x]]; return x;}
int first[M],cnt;
struct node{int to,next;}e[*M];
void ins(int a,int b){e[++cnt]=(node){b,first[a]}; first[a]=cnt;}
void insert(int a,int b){ins(a,b); ins(b,a);}
int deep[M],fa[M];
int dfs(int x,int last){
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(now==last) continue;
deep[now]=deep[x]+;
fa[now]=x;
dfs(now,x);
}
}
struct pos{
int d,w;
bool operator <(const pos &x)const{return d!=x.d?d>x.d:w>x.w;}
};
std::multiset<pos>tr[M];
typedef std::multiset<pos>::iterator IT;
void delet(int x,pos p,int s){
p.w+=s;IT it=tr[x].upper_bound(p);
if(it!=tr[x].begin()){
it--;
while(it->w>=p.w){
if(it==tr[x].begin()){tr[x].erase(it);break;}
IT now=it; --now;
tr[x].erase(it);
it=now;
}
}
it=tr[x].upper_bound(p);
if(it==tr[x].end()||it->w>p.w) tr[x].insert(p);
}
int dec[M];
void push_ans(int x){
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(now==fa[x]) continue;
push_ans(now);
if(tr[now].size()>tr[x].size()) tr[x].swap(tr[now]),std::swap(dec[x],dec[now]);
for(IT it=tr[now].begin();it!=tr[now].end();it++) delet(x,*it,dec[x]-dec[now]);
tr[now].clear();
}
//if(x==2) for(IT it=tr[x].begin();it!=tr[x].end();it++) printf("A[%d %d]\n",it->d,it->w);
while(tr[x].size()){
IT it=tr[x].begin();
if(it->d==deep[x]) tr[x].erase(it);
else break;
}
if(x!=&&f[x]==x){
if(tr[x].empty()) puts("-1"),exit();
IT it=tr[x].begin();
ans+=it->w-dec[x];
dec[x]=it->w;
int v=x; while(deep[v]>it->d) v=f[v]=find(fa[v]);
tr[x].erase(it);
}
}
int main(){
int x,y,w;
n=read(); m=read();
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<n;i++) x=read(),y=read(),insert(x,y);
deep[]=; dfs(,-);
for(int i=;i<=m;i++){
x=read(); y=read(); w=read();
pos p=(pos){deep[y],w};
delet(x,p,);
}
push_ans();
printf("%lld\n",ans);
return ;
}
codefoeces problem 671D——贪心+启发式合并+平衡树的更多相关文章
- CEOI 2019 Day2 T2 魔法树 Magic Tree (LOJ#3166、CF1993B、and JOI2021 3.20 T3) (启发式合并平衡树,线段树合并)
前言 已经是第三次遇到原题. 第一次是在 J O I 2021 S p r i n g C a m p \rm JOI2021~Spring~Camp JOI2021 Spring Camp 里遇到的 ...
- Luogu5290 十二省联考2019春节十二响(贪心+启发式合并)
考虑链的做法,显然将两部分各自从大到小排序后逐位取max即可,最后将根计入.猜想树上做法相同,即按上述方式逐个合并子树,最后加入根.用multiset启发式合并即可维护.因为每次合并后较小集合会消失, ...
- BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )
枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...
- bzoj 2809 左偏树\平衡树启发式合并
首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...
- 【BZOJ1483】【HNOI2009】梦幻布丁(启发式合并,平衡树)
[BZOJ1483][HNOI2009]梦幻布丁 题面 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...
- ☆ [HNOI2012] 永无乡 「平衡树启发式合并」
题目类型:平衡树启发式合并 传送门:>Here< 题意:节点可以连边(不能断边),询问任意两个节点的连通性与一个连通块中排名第\(k\)的节点 解题思路 如果不需要询问排名,那么并查集即可 ...
- 【pb_ds】【平衡树启发式合并】【并查集】bzoj2733 [HNOI2012]永无乡
用并查集维护联通性.对每个联通块维护一个平衡树.合并时启发式合并.比较懒,用了pb_ds. #include<cstdio> #include<ext/pb_ds/assoc_con ...
- 【BZOJ1483】[HNOI2009]梦幻布丁(平衡树启发式合并+并查集)
题目: BZOJ1483 分析: (这题码了一下午,码了近250行,但是意外跑的比本校各位神仙稍快,特写博客纪念) 首先能看出一个显然的结论:颜色段数只会变少不会变多. 我们考虑用并查集维护区间,对于 ...
- [多校 NOIP 联合模拟 20201130 T4] ZZH 的旅行(斜率优化dp,启发式合并,平衡树)
题面 题目背景 因为出题人天天被 ZZH(Zou ZHen) 吊打,所以这场比赛的题目中出现了 ZZH . 简要题面 数据范围 题解 (笔者写两个log的平衡树和启发式合并卡过的,不足为奇) 首先,很 ...
随机推荐
- nginx 负载均衡 反向代理
nginx 通过方向代理实现负载均衡,负载均衡是大流量网站要做的措施,单从字面上的意思来理解为N台服务器平均分担负载,不会因为某一台服务器负载高宕机而影响用户访问网站,负载均衡至少需要三台服务器, 既 ...
- oracle 开启归档日志模式
摘自:https://www.jianshu.com/p/f8c0e9309ce2 在默认情况下,oracle数据库是在非归日志档模式中创建的,在非归档日志模式中,进行日志切换时会直接重写redo l ...
- OpenCV入门:(六:基础画图函数)
有时程序中需要画一些基础的图形,例如直线,矩形,椭圆以及多边形.OpenCV中当然有此类函数. 1.函数介绍 直线line: , , ) img – 图像 pt1 – 直线起点 pt2 – 直线终点 ...
- 阿里云ECS下基于Centos7.4安装MySQL5.7.20
1.首先登录阿里云ECS服务器,如下图所示: 2.卸载MariaDB 说明:CentOS7.x默认安装MariaDB而不是MySQL,而且yum服务器上也移除了MySQL相关的软件包.因为Maria ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型准备篇)
十月一的假期转眼就结束了,这个假期带女朋友到处玩了玩,虽然经济仿佛要陷入危机,不过没关系,要是吃不上饭就看书,吃精神粮食也不错,哈哈!开个玩笑,是要收收心好好干活了,继续写Faster-RCNN的代码 ...
- redis-Windows下安装与操作
Redis windows下安装 1.安装 (1)windows把redisbin_x32安装包放在电脑任意的盘里 (2)通过cmd找到对应目录: D\redisbin_x32 (3)开始安装 D\ ...
- Linux 简单socket实现TCP通信
服务器端代码 #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <stri ...
- HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)
Description There are N points in total. Every point moves in certain direction and certain speed. W ...
- [译]Python - socket.error: Cannot assign requested address
原文来源: https://stackoverflow.com/questions/48306528/python-socket-error-cannot-assign-requested-addre ...
- winform 根据两点求出线上所有点及画出这条线
找出所有点: 根据斜率按照一个方向递增,求出对应的另一个方向的整数值. Point pStart = new Point(0, 2); Point pEnd = new Point(8, 2); // ...