[POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling
Description
There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
program poj1180;
const maxn=;
var i,head,tail,n,s:longint;
opt,dp,f,t:array[-..maxn]of int64; function g(x,y:longint):extended;
begin
exit((dp[x]-dp[y])/(t[x]-t[y]));
end; begin
readln(n);
readln(s);
for i:= to n do readln(t[i],f[i]);
for i:=n- downto do
begin
inc(t[i],t[i+]);
inc(f[i],f[i+]);
end;
t[n+]:=;f[n+]:=;
head:=;tail:=;opt[]:=n+;dp[n+]:=;
for i:=n downto do
begin
while (head<tail)and(g(opt[head+],opt[head])<f[i]) do inc(head);
dp[i]:=dp[opt[head]]+(s+t[i]-t[opt[head]])*f[i];
while (head<tail)and(g(opt[tail],opt[tail-])>g(i,opt[tail])) do dec(tail);
inc(tail);opt[tail]:=i;
end;
writeln(dp[]);
end.
POJ3709 K-Anonymous Sequence
Description
The explosively increasing network data in various application domains has raised privacy concerns for the individuals involved. Recent studies show that simply removing the identities of nodes before publishing the graph/social network data does not guarantee privacy. The structure of the graph itself, along with its basic form the degree of nodes, can reveal the identities of individuals.
To address this issue, we study a specific graph-anonymization problem. We call a graph k-anonymous if for every node v, there exist at least k-1 other nodes in the graph with the same degree asv. And we are interested in achieving k-anonymous on a graph with the minimum number of graph-modification operations.
We simplify the problem. Pick n nodes out of the entire graph G and list their degrees in ascending order. We define a sequence k-anonymous if for every element s, there exist at least k-1 other elements in the sequence equal to s. To let the given sequence k-anonymous, you could do one operation only—decrease some of the numbers in the sequence. And we define the cost of the modification the sum of the difference of all numbers you modified. e.g. sequence 2, 2, 3, 4, 4, 5, 5, with k=3, can be modified to 2, 2, 2, 4, 4, 4, 4, which satisfy 3-anonymous property and the cost of the modification will be |3-2| + |5-4| + |5-4| = 3.
Give a sequence with n numbers in ascending order and k, we want to know the modification with minimal cost among all modifications which adjust the sequence k-anonymous.
也是一道斜率优化的拓展题。首先我们可以非常熟练地推出斜率:
g[j,k]=(f[j]-s[j]+j*a[j]-(f[k]-s[k]+k*a[k]))/(a[j]-a[k])
推的过程大同小异这里就不详细列出了。
然后转移方程
f[i]=f[j]+s[i]-s[j]-(i-j)*a[j]
(a[j]=s[j+1])(为了形式更优美我们把下标换成j当然不换也没有什么关系)
这道题的问题有两个
其中一个是k要怎么控制?刚开始想了一个并不好的方法就是在求解的时候各种控制但是还要担心缩tail的时候会影响后面的答案...
其实只要从DP的角度考虑,将i点加入队列无非就是给i以后的点增加一个可转移的状态
那么只要保证当前在求i的时候,i-k+1..i-1的点不在单调队列里就行了
自然而然地想到了延迟入队这样问题就迎刃而解了
在上一道题中,保证每个零件的加工时间都是非负整数,因此表示前缀和的t数组数字各不相同
而这道题不一样,作为分母的a数组可能相同,所以斜率还要特判分母等于0的情况
刚开始就是这里出了错。返回值要根据分子的符号来决定是正无穷还是负无穷。
program poj3709;
const maxn=;INF=;
var t,test,n,k,head,tail,v,i:longint;
s,a,opt,f:array[-..maxn]of int64; function g(x,y:longint):extended;
begin
if a[x]<>a[y] then exit((f[x]-s[x]+x*a[x]-f[y]+s[y]-y*a[y])/(a[x]-a[y]));
if (f[x]-s[x]+x*a[x]-f[y]+s[y]-y*a[y])> then exit(INF) else exit(-INF);
//如果分子是正的就返回正无穷否则返回负无穷
end; begin
readln(test);
for t:= to test do
begin
readln(n,k);
for i:= to n do read(s[i]);s[n+]:=;
for i:= to n do a[i]:=s[i+];
for i:= to n do inc(s[i],s[i-]);
head:=;tail:=;opt[]:=;s[]:=;f[]:=;
for i:=k to n do
//这里我控制的目的是不要让<k的无用状态将head移向后面
begin
while (head<tail)and(g(opt[head+],opt[head])<i) do inc(head);
f[i]:=f[opt[head]]+(s[i]-s[opt[head]])-(i-opt[head])*a[opt[head]];
if i-k+>=k then
//为下一次作的准备,i+1的时候需要i+1-k的状态。而且显然<k的状态是不能被转移的
begin
while (head<tail)and(g(opt[tail],opt[tail-])>g(i-k+,opt[tail])) do dec(tail);
inc(tail);opt[tail]:=i-k+;
end;
end;
writeln(f[n]);
end;
end.
[POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP的更多相关文章
- POJ 3709 K-Anonymous Sequence - 斜率优化dp
描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j + sum_i - su ...
- POJ3709 K-Anonymous Sequence 斜率优化DP
POJ3709 题意很简单 给n个递增整数(n<=500000)和一种操作(选择任意个数 使他们减少整数值) 使得对于所有的整数 在数列中 有k个相等的数 O(n^2)的DP方程很容易得出 如下 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- 斜率优化dp(POJ1180 Uva1451)
学这个斜率优化dp却找到这个真心容易出错的题目,其中要从n倒过来到1的确实没有想到,另外斜率优化dp的算法一开始看网上各种大牛博客自以为懂了,最后才发现是错了. 不过觉得看那些博客中都是用文字来描述, ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
- HDU2829 Lawrence(斜率优化dp)
学了模板题之后上网搜下斜率优化dp的题目,然后就看到这道题,知道是斜率dp之后有思路就可以自己做不出来,要是不事先知道的话那就说不定了. 题意:给你n个数,一开始n个数相邻的数之间是被东西连着的,对于 ...
随机推荐
- Linux - 信息收集
1. #!,代表加载器(解释器)的路径,如: #!/bin/bash echo "Hello Boy!" 上面的意思是说,把下面的字符(#!/bin/bash以下的所有字符)统统传 ...
- redis学习资料汇总
redis学习资料汇总 2017年01月07日 22:10:37 阅读数:281 转载:http://blog.csdn.net/wtyvhreal/article/details/50427627 ...
- 教你用Bootstrap开发漂亮的前端界面
Bootstrap介绍: Bootstrap 是最受欢迎的 HTML.CSS 和 JS 框架,用于开发响应式布局.移动设备优先的 WEB 项目. Bootstrap的特点: 一.预处理脚本:虽然可以直 ...
- Eclipse+APKTool动态调试APK
1. 所需工具 Eclipse. Apktool v2.0.6. 安卓SDK工具. 2. 重编译APK apktool d -d -o test test.apk 此时当前test目录下就是apkto ...
- ES6 语法糖
重新认识ES6中的语法糖:https://segmentfault.com/a/1190000010159725
- QC的使用学习(一)
今天学习的时间很少,就利用睡前的一点时间来学习一下刚安装好的QC. 1.后台站点管理.主要是对八大选项的了解: site project:顾名思义,就站点项目管理,管理域和项目. site user: ...
- OpenStack配置虚拟机vcpu绑定步骤 转至元数据结尾
. Changed in compute node: 给宿主机预留资源: 宿主机可用cpu:cpuid – cpuid 宿主机可用内存:25G #vim /etc/nova/nova.conf vcp ...
- 爬虫:Scrapy17 - Common Practices
在脚本中运行 Scrapy 除了常用的 scrapy crawl 来启动 Scrapy,也可以使用 API 在脚本中启动 Scrapy. 需要注意的是,Scrapy 是在 Twisted 异步网络库上 ...
- winform 控件半透明设置
1.backcolor属性为color.FromArgb(100, 220, 220, 220); 2.全透明设置为transparent方法.
- windows下eclipse连接ubuntu伪分布式hadoop2.6.0
环境: win10 jdk1.7 hadoop2.6.0 linux虚拟机 Ubuntu14.04 首先把安装在Ubuntu上的hadoop2.6.0.tar.gz复制到windows系统上,解压到任 ...