283. Move Zeroes【easy】

Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.

For example, given nums = [0, 1, 0, 3, 12], after calling your function, nums should be [1, 3, 12, 0, 0].

Note:

  1. You must do this in-place without making a copy of the array.
  2. Minimize the total number of operations.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

解法一:

 class Solution {
public:
void moveZeroes(vector<int>& nums) {
int i = , j = ;
while (i < nums.size()) {
if (nums[i] != ) {
nums[j++] = nums[i++];
}
else
{
++i;
}
} while (j < nums.size()) {
nums[j++] = ;
}
}
};

双指针

解法二:

This is a 2 pointer approach. The fast pointer which is denoted by variable "cur" does the job of processing new elements. If the newly found element is not a 0, we record it just after the last found non-0 element. The position of last found non-0 element is denoted by the slow pointer "lastNonZeroFoundAt" variable. As we keep finding new non-0 elements, we just overwrite them at the "lastNonZeroFoundAt + 1" 'th index. This overwrite will not result in any loss of data because we already processed what was there(if it were non-0,it already is now written at it's corresponding index,or if it were 0 it will be handled later in time).

After the "cur" index reaches the end of array, we now know that all the non-0 elements have been moved to beginning of array in their original order. Now comes the time to fulfil other requirement, "Move all 0's to the end". We now simply need to fill all the indexes after the "lastNonZeroFoundAt" index with 0.

 void moveZeroes(vector<int>& nums) {
int lastNonZeroFoundAt = ;
// If the current element is not 0, then we need to
// append it just in front of last non 0 element we found.
for (int i = ; i < nums.size(); i++) {
if (nums[i] != ) {
nums[lastNonZeroFoundAt++] = nums[i];
}
}
// After we have finished processing new elements,
// all the non-zero elements are already at beginning of array.
// We just need to fill remaining array with 0's.
for (int i = lastNonZeroFoundAt; i < nums.size(); i++) {
nums[i] = ;
}
}

Complexity Analysis

Space Complexity : O(1)O(1). Only constant space is used.

Time Complexity: O(n)O(n). However, the total number of operations are still sub-optimal. The total operations (array writes) that code does is nn (Total number of elements).

解法三:

The total number of operations of the previous approach is sub-optimal. For example, the array which has all (except last) leading zeroes: [0, 0, 0, ..., 0, 1].How many write operations to the array? For the previous approach, it writes 0's n-1n−1 times, which is not necessary. We could have instead written just once. How? ..... By only fixing the non-0 element,i.e., 1.

The optimal approach is again a subtle extension of above solution. A simple realization is if the current element is non-0, its' correct position can at best be it's current position or a position earlier. If it's the latter one, the current position will be eventually occupied by a non-0 ,or a 0, which lies at a index greater than 'cur' index. We fill the current position by 0 right away,so that unlike the previous solution, we don't need to come back here in next iteration.

In other words, the code will maintain the following invariant:

  1. All elements before the slow pointer (lastNonZeroFoundAt) are non-zeroes.

  2. All elements between the current and slow pointer are zeroes.

Therefore, when we encounter a non-zero element, we need to swap elements pointed by current and slow pointer, then advance both pointers. If it's zero element, we just advance current pointer.

With this invariant in-place, it's easy to see that the algorithm will work.

 void moveZeroes(vector<int>& nums) {
for (int lastNonZeroFoundAt = , cur = ; cur < nums.size(); cur++) {
if (nums[cur] != ) {
swap(nums[lastNonZeroFoundAt++], nums[cur]);
}
}
}

Complexity Analysis

Space Complexity : O(1)O(1). Only constant space is used.

Time Complexity: O(n)O(n). However, the total number of operations are optimal. The total operations (array writes) that code does is Number of non-0 elements.This gives us a much better best-case (when most of the elements are 0) complexity than last solution. However, the worst-case (when all elements are non-0) complexity for both the algorithms is same.

上面解法仍有优化空间,对于下标不同的时候才交换

 class Solution {
public:
void moveZeroes(vector<int>& nums) {
for (int i = , j = ; i < nums.size(); ++i) {
if (nums[i] != ) {
if (i != j) {
swap(nums[j], nums[i]);
}
++j;
}
}
}
};

解法二、三均参考自solution

283. Move Zeroes【easy】的更多相关文章

  1. 【leetcode】283. Move Zeroes

    problem 283. Move Zeroes solution 先把非零元素移到数组前面,其余补零即可. class Solution { public: void moveZeroes(vect ...

  2. LeetCode Javascript实现 283. Move Zeroes 349. Intersection of Two Arrays 237. Delete Node in a Linked List

    283. Move Zeroes var moveZeroes = function(nums) { var num1=0,num2=1; while(num1!=num2){ nums.forEac ...

  3. 27. Remove Element【easy】

    27. Remove Element[easy] Given an array and a value, remove all instances of that value in place and ...

  4. 657. Judge Route Circle【easy】

    657. Judge Route Circle[easy] Initially, there is a Robot at position (0, 0). Given a sequence of it ...

  5. 557. Reverse Words in a String III【easy】

    557. Reverse Words in a String III[easy] Given a string, you need to reverse the order of characters ...

  6. 283. Move Zeroes(C++)

    283. Move Zeroes Given an array nums, write a function to move all 0's to the end of it while mainta ...

  7. 170. Two Sum III - Data structure design【easy】

    170. Two Sum III - Data structure design[easy] Design and implement a TwoSum class. It should suppor ...

  8. 160. Intersection of Two Linked Lists【easy】

    160. Intersection of Two Linked Lists[easy] Write a program to find the node at which the intersecti ...

  9. 206. Reverse Linked List【easy】

    206. Reverse Linked List[easy] Reverse a singly linked list. Hint: A linked list can be reversed eit ...

随机推荐

  1. [BZOJ 2752] 高速公路

    Link: BZOJ 2752 传送门 Solution: 虽然有期望,但实际上就是除了个总数…… 此题计算总代价明显还是要使用对每个$w_i$计算贡献的方式: $w_i的贡献为w_i*(i-l+1) ...

  2. [Codeforces 19E] Fiary

    Brief Intro: 给定一个无向图,询问删去哪条边能使得剩下的图为一个二分图,输出所有结果 Algorithm: 关于二分图的重要性质:一个图为二分图的充要条件为其中没有奇环 1.如果没有奇环, ...

  3. 【dfs序】【二分】【主席树】【分块】bzoj3351 [ioi2009]Regions

    http://dzy493941464.sinaapp.com/archives/96 那个SIZE貌似必须设成R*R/Q?不知为啥,自己算的不是这个的说. 本机AC,线上TLE. #include& ...

  4. 【单调队列】【动态规划】bzoj3831 [Poi2014]Little Bird

    f(i)=min{f(j)+(D(j)<=D(i))} (max(1,i-k)<=j<=i) 有两个变量,很难用单调队列,但是(引用): 如果fi<fj,i一定比j优秀.因为如 ...

  5. 【贪心】bzoj3709 [PA2014]Bohater

    把怪分成两类看: 一.回血>损血 则若先杀损血少的再杀损血多的,则为当前这一步提供了更高的可能性.因为血量是单增的,所以尽量用较少的血量去干♂耗血较少的怪物. 二.回血<损血 则若先杀回血 ...

  6. 10.4(java学习笔记)CLOB,BLOB基本操作

    一.CLOB 1.1CLOB简介 CLOB全称是(Character Large Object)字符大对象,用于存储大量的文本数据. 字符大对象的操作不同于一般数据,是通过流来完成的. 1.2MySQ ...

  7. 微服务之SpringCloud实战(四):SpringCloud Eureka源码分析

    Eureka源码解析: 搭建Eureka服务的时候,我们会再SpringBoot启动类加上@EnableEurekaServer的注解,这个注解做了一些什么,我们一起来看. 点进@EnableEure ...

  8. ntp流量放大攻击分析

    最近,听说挂在网络上的设备进行时间同步成功率低,YS需要架设自己的NTP服务器,这玩意第一时间能让人想到NTP流量放大攻击,这也是一种比较古老的攻击方式,检测了一下发现所使用的OS默认已经进行了加固, ...

  9. golangWEB框架gin学习之路由群组

    原文地址:http://www.niu12.com/article/42 package main import ( "github.com/gin-gonic/gin" &quo ...

  10. 80端口被system进程占用解决方法

    今天启动Apache的时候老是提示失败,很简单,使用 netstat -ano 发现80端口被占用.如图所示: 按照PID 来说:在任务管理器中查看PID 的进程名 既然是system.那么 应该不回 ...