283. Move Zeroes【easy】

Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.

For example, given nums = [0, 1, 0, 3, 12], after calling your function, nums should be [1, 3, 12, 0, 0].

Note:

  1. You must do this in-place without making a copy of the array.
  2. Minimize the total number of operations.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

解法一:

 class Solution {
public:
void moveZeroes(vector<int>& nums) {
int i = , j = ;
while (i < nums.size()) {
if (nums[i] != ) {
nums[j++] = nums[i++];
}
else
{
++i;
}
} while (j < nums.size()) {
nums[j++] = ;
}
}
};

双指针

解法二:

This is a 2 pointer approach. The fast pointer which is denoted by variable "cur" does the job of processing new elements. If the newly found element is not a 0, we record it just after the last found non-0 element. The position of last found non-0 element is denoted by the slow pointer "lastNonZeroFoundAt" variable. As we keep finding new non-0 elements, we just overwrite them at the "lastNonZeroFoundAt + 1" 'th index. This overwrite will not result in any loss of data because we already processed what was there(if it were non-0,it already is now written at it's corresponding index,or if it were 0 it will be handled later in time).

After the "cur" index reaches the end of array, we now know that all the non-0 elements have been moved to beginning of array in their original order. Now comes the time to fulfil other requirement, "Move all 0's to the end". We now simply need to fill all the indexes after the "lastNonZeroFoundAt" index with 0.

 void moveZeroes(vector<int>& nums) {
int lastNonZeroFoundAt = ;
// If the current element is not 0, then we need to
// append it just in front of last non 0 element we found.
for (int i = ; i < nums.size(); i++) {
if (nums[i] != ) {
nums[lastNonZeroFoundAt++] = nums[i];
}
}
// After we have finished processing new elements,
// all the non-zero elements are already at beginning of array.
// We just need to fill remaining array with 0's.
for (int i = lastNonZeroFoundAt; i < nums.size(); i++) {
nums[i] = ;
}
}

Complexity Analysis

Space Complexity : O(1)O(1). Only constant space is used.

Time Complexity: O(n)O(n). However, the total number of operations are still sub-optimal. The total operations (array writes) that code does is nn (Total number of elements).

解法三:

The total number of operations of the previous approach is sub-optimal. For example, the array which has all (except last) leading zeroes: [0, 0, 0, ..., 0, 1].How many write operations to the array? For the previous approach, it writes 0's n-1n−1 times, which is not necessary. We could have instead written just once. How? ..... By only fixing the non-0 element,i.e., 1.

The optimal approach is again a subtle extension of above solution. A simple realization is if the current element is non-0, its' correct position can at best be it's current position or a position earlier. If it's the latter one, the current position will be eventually occupied by a non-0 ,or a 0, which lies at a index greater than 'cur' index. We fill the current position by 0 right away,so that unlike the previous solution, we don't need to come back here in next iteration.

In other words, the code will maintain the following invariant:

  1. All elements before the slow pointer (lastNonZeroFoundAt) are non-zeroes.

  2. All elements between the current and slow pointer are zeroes.

Therefore, when we encounter a non-zero element, we need to swap elements pointed by current and slow pointer, then advance both pointers. If it's zero element, we just advance current pointer.

With this invariant in-place, it's easy to see that the algorithm will work.

 void moveZeroes(vector<int>& nums) {
for (int lastNonZeroFoundAt = , cur = ; cur < nums.size(); cur++) {
if (nums[cur] != ) {
swap(nums[lastNonZeroFoundAt++], nums[cur]);
}
}
}

Complexity Analysis

Space Complexity : O(1)O(1). Only constant space is used.

Time Complexity: O(n)O(n). However, the total number of operations are optimal. The total operations (array writes) that code does is Number of non-0 elements.This gives us a much better best-case (when most of the elements are 0) complexity than last solution. However, the worst-case (when all elements are non-0) complexity for both the algorithms is same.

上面解法仍有优化空间,对于下标不同的时候才交换

 class Solution {
public:
void moveZeroes(vector<int>& nums) {
for (int i = , j = ; i < nums.size(); ++i) {
if (nums[i] != ) {
if (i != j) {
swap(nums[j], nums[i]);
}
++j;
}
}
}
};

解法二、三均参考自solution

283. Move Zeroes【easy】的更多相关文章

  1. 【leetcode】283. Move Zeroes

    problem 283. Move Zeroes solution 先把非零元素移到数组前面,其余补零即可. class Solution { public: void moveZeroes(vect ...

  2. LeetCode Javascript实现 283. Move Zeroes 349. Intersection of Two Arrays 237. Delete Node in a Linked List

    283. Move Zeroes var moveZeroes = function(nums) { var num1=0,num2=1; while(num1!=num2){ nums.forEac ...

  3. 27. Remove Element【easy】

    27. Remove Element[easy] Given an array and a value, remove all instances of that value in place and ...

  4. 657. Judge Route Circle【easy】

    657. Judge Route Circle[easy] Initially, there is a Robot at position (0, 0). Given a sequence of it ...

  5. 557. Reverse Words in a String III【easy】

    557. Reverse Words in a String III[easy] Given a string, you need to reverse the order of characters ...

  6. 283. Move Zeroes(C++)

    283. Move Zeroes Given an array nums, write a function to move all 0's to the end of it while mainta ...

  7. 170. Two Sum III - Data structure design【easy】

    170. Two Sum III - Data structure design[easy] Design and implement a TwoSum class. It should suppor ...

  8. 160. Intersection of Two Linked Lists【easy】

    160. Intersection of Two Linked Lists[easy] Write a program to find the node at which the intersecti ...

  9. 206. Reverse Linked List【easy】

    206. Reverse Linked List[easy] Reverse a singly linked list. Hint: A linked list can be reversed eit ...

随机推荐

  1. java.lang.NoSuchMethodError:org.hibernate.SessionFactory.openSession()Lorg/hibernate/classic/Session

    项目配置了spring 4.0.6.RELEASE 和hibernate4.2.0.Final ,出错原因是因为在Spring 3.1开始没有了HibernateDaoSupport类,而我的却Dao ...

  2. OC语言基础之NSString

    1.字符串的创建 1: NSString *s1 = @"jack"; 2: 3: //NSString *s2 = [[NSString alloc] initWithStrin ...

  3. EF 通用数据层父类方法小结

    MSSql 数据库 数据层 父类 增删改查: using System;using System.Collections.Generic;using System.Data;using System. ...

  4. SqlServer_合并多个递归查询数据(CTE)

    该方法在数据量过大时,效率过低,可参考hierarchyid字段实现(Sqlserver 2008) 优点:效率较高 缺点:需要不断维护数据,对现有业务有一定影响 参考:http://www.cnbl ...

  5. Oracle里面的用户user无法登录 LOCKED(TIMED)

    SQL>conn test/test 还是报同样的错误,这就奇怪了.看看dba_users中该用户的状态等信息 SQL>select account_status,lock_date,pr ...

  6. 'dict_values' object does not support indexing, Python字典dict中由value查key

    Python字典dict中由value查key 众所周知,字典dict最大的好处就是查找或插入的速度极快,并且不想列表list一样,随着key的增加越来越复杂.但是dict需要占用较大的内存空间,换句 ...

  7. virtualenv、virtualenvwrapper安装和使用;Mac os的特殊性

    [sudo] pip install virtualenv 或者[sudo] pip3 install virtualenv [sudo]可用可不用 pip/pip3 install virtuale ...

  8. Yii2系列教程四:实现用户注册,验证,登录

    上一篇写了一点点Yii2的数据库相关知识和强大的Gii,这一篇就如上一篇的最后所说的一样:在Yii2中实现用户的注册和登录. 你可以直接到Github下载源码,以便可以跟上进度,你也可以重头开始,一步 ...

  9. 二分求幂 - A^B(王道*)

    题目描述: 求A^B的最后三位数表示的整数,说明:A^B的含义是“A的B次方” 输入: 输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果 ...

  10. virtualbox虚拟机ubuntu操作系统,设置网络互通、访问,能访问虚拟机swoole的http服务

    网络互通 1.设置virtualbox网络连接模式为桥接网卡模式 2.重启虚拟机查看虚拟机IP ifconfig 3.开启window的telnet程序 控制面板->程序->启用或关闭wi ...