题解

显然可以O(nlogn)计算

代码

//by 减维
#include<set>
#include<map>
#include<queue>
#include<ctime>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define rg register
#define db double
#define mpr make_pair
#define maxn 2000005
#define inf (1<<30)
#define eps 1e-8
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int t,n,num,mu[maxn],pri[maxn],phi[maxn];
ll cnt[maxn],sum[maxn];
bool pd[maxn]; void pre()
{
phi[]=;mu[]=;
for(int i=;i<=maxn-;i++)
{
if(!pd[i]) pri[++num]=i,phi[i]=i-,mu[i]=-;
for(int j=;j<=num&&i*pri[j]<=maxn-;++j)
{
pd[i*pri[j]]=;
if(i%pri[j]==)
{
phi[i*pri[j]]=phi[i]*pri[j];
break ;
}
phi[i*pri[j]]=phi[i]*phi[pri[j]];
mu[i*pri[j]]=-mu[i];
}
}
} il ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);} ll solve(int x)
{
memset(cnt,,sizeof cnt);
memset(sum,,sizeof sum);
for(int i=;i<=x;++i) cnt[phi[i]]++;
for(int i=;i<=x;++i)
for(int j=;i*j<=x;++j) sum[i]+=cnt[i*j];
ll ret=;
for(int d=;d<=x;++d)
if(mu[d])
for(int dd=;dd*d<=x;++dd)
ret+=phi[dd]*mu[d]*sum[d*dd]*sum[d*dd];
return ret;
} int main()
{
t=read();
pre();
while(t--)
{
n=read();
printf("%lld\n",solve(n));
}
return ;
}

【莫比乌斯反演】51nod1594 Gcd and Phi的更多相关文章

  1. 数学:莫比乌斯反演-GCD计数

    Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...

  2. ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下 ...

  3. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  4. 【Project Euler】530 GCD of Divisors 莫比乌斯反演

    [题目]GCD of Divisors [题意]给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15. [算法]莫比乌斯反演 [题解]参考:任之洲数论函数.pdf 这个范围显然 ...

  5. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  6. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  7. 洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演

    易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{ ...

  8. 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)

    题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...

  9. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

随机推荐

  1. web前端总结面试问题(理论)

    一个页面从输入url到页面显示加载完成,这个过程发生了什么? 1.浏览器根据请求的URL交给DNS域名解析,找到真实的IP,向服务器发起请求. 2.服务器交给后台处理完成后返回数据,浏览器接收文件(h ...

  2. thinkphp phpmailer邮箱验证

    thinkphp 关于phpmailer的邮箱验证 一  . 登陆自己的邮箱,例如:qq邮箱.登陆qq邮箱在账户设置中开启smtp服务: 之后回发送一个授权码 , 这个授权码先保存下来,这个授权码在后 ...

  3. Learning Experience of Big Data: Learn to install CentOs 6.5 on my laptop

    I have learnt some experience about Big Data during my summer vocation,I was told that The first thi ...

  4. C语言学习记录_2019.02.02

    变量在第一次被使用之前应该赋初值 scanf(“%d”,&price); scanf(“price%d %d”,&price);  scanf中的东西一定是要输入的东西. 定义常量:c ...

  5. linux-课题练习1

    1.创建组testgroup: 2.创建用户a2012,先采用默认设置创建,然后使该用户加入testgroup组. 3.创建用户a2013,其用户主目录为/tmp/a2013,其主组为testgrou ...

  6. HyperLedger Fabric 1.4 超级账本项目(5.4)

    超级账本(Hyperledger)项目分框架类和工具类两种项目,框架类有Hyperledger Burrow.Hyperledger Fabric.Hyperledger Indy.Hyperledg ...

  7. 根据STATUS信息对MySQL进行优化

    mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一.慢查询mysql> sh ...

  8. 多表头的DataGridView

           上次在程序中要用到多表头的DataGridView,在网上搜索了一个,感觉还不错,现在简单的介绍一下它的用法.首先得把这个dll拷贝到相应的目录下,dll名称是myMultiColHea ...

  9. Git 相关工具及教程地址

    一.Git GUI 客户端 Git 客户端下载(Windows) TortoiseGit 客户端下载(Windows) Sourcetree 客户端下载(Windows.Mac) Git Extens ...

  10. 【Java】Map转换器

    描述: 在控制层接收参数时候, 往往会出现Json格式需要转换为Bean. 通常一两个字段可以用new去save pojo, 但字段多的情况呢? 以下就是为了解决这个尴尬情况,  自己写一个转换工具类 ...