【莫比乌斯反演】51nod1594 Gcd and Phi

题解

显然可以O(nlogn)计算
代码
//by 减维
#include<set>
#include<map>
#include<queue>
#include<ctime>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define rg register
#define db double
#define mpr make_pair
#define maxn 2000005
#define inf (1<<30)
#define eps 1e-8
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int t,n,num,mu[maxn],pri[maxn],phi[maxn];
ll cnt[maxn],sum[maxn];
bool pd[maxn]; void pre()
{
phi[]=;mu[]=;
for(int i=;i<=maxn-;i++)
{
if(!pd[i]) pri[++num]=i,phi[i]=i-,mu[i]=-;
for(int j=;j<=num&&i*pri[j]<=maxn-;++j)
{
pd[i*pri[j]]=;
if(i%pri[j]==)
{
phi[i*pri[j]]=phi[i]*pri[j];
break ;
}
phi[i*pri[j]]=phi[i]*phi[pri[j]];
mu[i*pri[j]]=-mu[i];
}
}
} il ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);} ll solve(int x)
{
memset(cnt,,sizeof cnt);
memset(sum,,sizeof sum);
for(int i=;i<=x;++i) cnt[phi[i]]++;
for(int i=;i<=x;++i)
for(int j=;i*j<=x;++j) sum[i]+=cnt[i*j];
ll ret=;
for(int d=;d<=x;++d)
if(mu[d])
for(int dd=;dd*d<=x;++dd)
ret+=phi[dd]*mu[d]*sum[d*dd]*sum[d*dd];
return ret;
} int main()
{
t=read();
pre();
while(t--)
{
n=read();
printf("%lld\n",solve(n));
}
return ;
}
【莫比乌斯反演】51nod1594 Gcd and Phi的更多相关文章
- 数学:莫比乌斯反演-GCD计数
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...
- ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下 ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 【Project Euler】530 GCD of Divisors 莫比乌斯反演
[题目]GCD of Divisors [题意]给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15. [算法]莫比乌斯反演 [题解]参考:任之洲数论函数.pdf 这个范围显然 ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演
易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{ ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
随机推荐
- laydate js动态添加时间
$("#test2").click(function(){ var input=$('<input/>'); $("#test1").append( ...
- php将html页面截图并保存成图片
采用html5的canvas,将图片绘制到画布上,然后用canvas的 toDataURL 方法. 但是在图片转base64的过程中遇到了两个问题, 1:图片无法绘制,转成的base64 用浏览器打开 ...
- Hive优化之谓词下推
Hive优化之谓词下推 解释 Hive谓词下推(Predicate pushdown) 关系型数据库借鉴而来,关系型数据中谓词下推到外部数据库用以减少数据传输 基本思想:尽可能早的处理表达式 属于逻辑 ...
- HDU暑假多校第八场G-Card Game
一.题意 给出N个卡牌,卡牌的正反两面具有两个数字,取值范围为[1,2*n],给出若干个默认正面向上的卡牌,求最小反转多少张卡牌可以使得,每张卡牌朝上的面上都有一个不同的数字,同时满足最小反转次数的反 ...
- python2.7入门---SMTP发送邮件
SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.python的smtplib提 ...
- 【转】Ubuntu 14.04下Django+MySQL安装部署全过程
一.简要步骤.(阿里云Ubuntu14.04) Python安装 Django Mysql的安装与配置 记录一下我的部署过程,也方便一些有需要的童鞋,大神勿喷~ 二.Python的安装 由于博主使用的 ...
- Java:static的作用分析
static表示“静态”或者“全局”的意思,但在Java中不能在所有类之外定义全局变量,只能通过在一个类中定义公用.静态的变量来实现一个全局变量. 一.静态变量 1. Java中存在两种变量,一种是s ...
- Android ANR 分析
首先贴一下trace 文件 Process: com.oppo.reader PID: 20358 Time: 2933175644_1545041895232 Flags: 0x38d83e44 P ...
- 【jQuery】 效果
[jQuery] 效果 资料 http://www.w3school.com.cn/jquery/jquery_ref_effects.asp 1. 显示隐藏 hide(); 隐藏 show(): 显 ...
- 【多线程】 Task
[多线程] Task 一. 常用方法: 1. ContinueWith : 当前 Task 完成后, 执行传入的 Task 2. Delay : 创建一个等待的 Task,只有在调用 Wait 方法时 ...