4710 [Jsoi2011]分特产

题意

给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同。将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方案数。


先考虑两个简单的问题

给定\(m\)个相同元素和\(n\)个不同位置,每个位置至少分一个的方案数?

使用插板法,等价于在\(m-1\)个空挡里插\(n-1\)个元素,方案数为

\[\binom{m-1}{n-1}
\]

但是这样考虑,这个题目是做不了的。

给定\(m\)个相同元素和\(n\)个不同位置,每个位置可以不分的方案数?

事实上还是插板,但可以一个位置插两个板子。

把\(m\)个元素看做\(1\),把\(n-1\)个插开点看做\(0\),等价于从\(m+n-1\)个元素拿\(n-1\)个,方案数为

\[\binom{m+n-1}{n-1}
\]


从问题\(2\)出发,我们就可以容斥了

把一种方案有几个位置没选作为方案的性质,我们可以计算出一个至少有几个人没选的方案集合的数量。

因为位置的计算方法是等价的,所以我们不需要枚举子集,只需要简单的按照组合数进行计算就可以了。

具体的说,我们把所有集合的元素都独立按方案二的选出来,令\(f_i\)代表至少\(i\)个位置不选择元素的方案数,则有

\[f_i=\binom{n}{i}\prod\limits_{j=1}^n \binom{a_j+n-i-1}{n-i-1}
\]

则总方案是 至少\(0\)人-至少\(1\)人+...,即

\[\sum_{i=0}^{n-1}(-1)^if_i
\]


Code:

#include <cstdio>
#define ll long long
const int N=2000;
const ll mod=1e9+7;
ll C[N+10][N+10];
void init()
{
C[0][0]=1;
for(int i=1;i<=N;i++)
{
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
}
int n,m,a[N];ll ans;
int main()
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d",a+i);
for(int i=0;i<n;i++)
{
ll mu=1;
for(int j=1;j<=m;j++)
(mu*=C[a[j]+n-i-1][n-i-1])%=mod;
(ans+=(i&1?-1ll:1ll)*C[n][i]*mu%mod)%=mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}

2018.10.18

BZOJ 4710 [Jsoi2011]分特产 解题报告的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. bzoj 4710: [Jsoi2011]分特产

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  3. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

  4. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

  5. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  6. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  7. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  8. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  9. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

随机推荐

  1. python-三级菜单的优化实现

    三级菜单需求: 1.可依次选择进入各子菜单 2.可从任意一层往回退到上一层 3.可从任意一层退出程序 所需新知识点:列表.字典 先通过字典建立数据结构 #创建字典 city_dic = { " ...

  2. 使用Jcrop-canvas画布-制作前端图像裁剪

    写在前面 –公司有这个需求,安排调查 –目前各大网站都是采用的-前端做裁剪返回坐标-由后端来做到裁剪 –而使用html-canvas画布可以直接前端裁剪并返回base64流-ajax可以直接下载保存 ...

  3. 使用mysql5.7版本数据库需要注意的地方/持续更新

    数据库mysql 5.7版本的初始密码修改 安装完后实在是找不到初始密码的文件,后面发现再错误日志中 先关闭mysql pkill mysqld 安全模式启动数据库并修改密码 mysqld_safe ...

  4. django开发傻瓜教程-3-celery异步处理

    Ref: https://www.jianshu.com/p/6f8576a37a3e https://blog.csdn.net/Demo_3/article/details/78119951 ht ...

  5. Java学习笔记七:Java的流程控制语句之switch

    Java条件语句之 switch 当需要对选项进行等值判断时,使用 switch 语句更加简洁明了.例如:根据考试分数,给予前四名不同的奖品.第一名,奖励笔记本一台:第二名,奖励 IPAD 2 一个: ...

  6. Fibonacci使用递归和循环实现

    #include<stdio.h> double Fibonacci(int i); double Fibonacci_(int i); int main(void) { int i; p ...

  7. 002---tcp/ip五层详解

    tcp/ip 五层模型讲解 越靠底层就越接近硬件,越靠上层越接近用户.先从底层看起,理解整个互联网通信的原理. 物理层(传输电信号) 孤立的计算机想要一起玩.就必须用硬件在计算机之间完成组网.以硬件做 ...

  8. 【动态规划】[UVA1025]A Spy in the Metro 城市里的间谍

    参考:https://blog.csdn.net/NOIAu/article/details/71517440 https://blog.csdn.net/c20180630/article/deta ...

  9. Git使用之二:下载远程代码到本地指定文件夹

    一.前期工作: 1.准备好本地的文件夹 2.如果后期需要继续以该文件夹进行同步的,则需要配置该文件夹,方法请参考之前的  Git使用之一:创建仓储和提交文件 二.用clone(克隆方式下载) 在本地下 ...

  10. Android stadio bug

    好生气啊,android stadio 有bug.自己的代码,一直没有生效,原来是stadio 的问题.只是因为我打开了增强模式,后来,buildToolVersion 改了之后,android st ...