Rain on your Parade

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 3310    Accepted Submission(s): 1066

Problem Description
You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.

 
Input
The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
 
Output
For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.
 
Sample Input
2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
 
Sample Output
Scenario #1:
2
 
Scenario #2:
2
 
Source
 
这道题用匈牙利算法会超时,匈牙利算法复杂度O(V*E)
Hopcroft-Carp算法复杂度O(sqrt(V)*E)
/*
ID: LinKArftc
PROG: 2389.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ; struct Node {
double x, y, speed;
Node() {}
Node(double _x, double _y) : x(_x), y(_y) {}
Node(double _x, double _y, double _s) : x(_x), y(_y), speed(_s) {}
} men[maxn], un[maxn]; vector<int>G[maxn];
int uN, vN;
int Mx[maxn],My[maxn];
int dx[maxn],dy[maxn];
int dis;
bool used[maxn];
bool SearchP()
{
queue<int>Q;
dis = INF;
memset(dx,-,sizeof(dx));
memset(dy,-,sizeof(dy));
for(int i = ; i <= uN; i++)
if(Mx[i] == -)
{
Q.push(i);
dx[i] = ;
}
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(dx[u] > dis)break;
int sz = G[u].size();
for(int i = ;i < sz;i++)
{
int v = G[u][i];
if(dy[v] == -)
{
dy[v] = dx[u] + ;
if(My[v] == -)dis = dy[v];
else
{
dx[My[v]] = dy[v] + ;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
bool DFS(int u)
{
int sz = G[u].size();
for(int i = ;i < sz;i++)
{
int v = G[u][i];
if(!used[v] && dy[v] == dx[u] + )
{
used[v] = true;
if(My[v] != - && dy[v] == dis)continue;
if(My[v] == - || DFS(My[v]))
{
My[v] = u;
Mx[u] = v;
return true;
}
}
}
return false;
}
int MaxMatch()
{
int res = ;
memset(Mx,-,sizeof(Mx));
memset(My,-,sizeof(My));
while(SearchP())
{
memset(used,false,sizeof(used));
for(int i = ;i <= uN;i++)
if(Mx[i] == - && DFS(i))
res++;
}
return res;
} int main() {
//input;
int T, t, _t = ;
scanf("%d", &T);
while (T --) {
scanf("%d", &t);
scanf("%d", &uN);
for (int i = ; i <= uN; i ++) scanf("%lf %lf %lf", &men[i].x, &men[i].y, &men[i].speed);
scanf("%d", &vN);
for (int i = ; i <= vN; i ++) scanf("%lf %lf", &un[i].x, &un[i].y);
for (int i = ; i <= uN; i ++) {
G[i].clear();
for (int j = ; j <= vN; j ++) {
if (sqrt(fabs(men[i].x - un[j].x) * fabs(men[i].x - un[j].x) + fabs(men[i].y - un[j].y) * fabs(men[i].y - un[j].y)) - men[i].speed * t < eps) G[i].push_back(j);
}
}
printf("Scenario #%d:\n%d\n\n", _t ++, MaxMatch());
} return ;
}

HDU2389(二分图匹配Hopcroft-Carp算法)的更多相关文章

  1. hdu2389二分图之Hopcroft Karp算法

    You're giving a party in the garden of your villa by the sea. The party is a huge success, and every ...

  2. HDU5090--Game with Pearls 二分图匹配 (匈牙利算法)

    题意:给N个容器,每个容器里有一定数目的珍珠,现在Jerry开始在管子上面再放一些珍珠,放上的珍珠数必须是K的倍数,可以不放.最后将容器排序,如果可以做到第i个容器上面有i个珍珠,则Jerry胜出,反 ...

  3. [ACM] HDU 3395 Special Fish (最大重量二分图匹配,KM算法)

    Special Fish Problem Description There is a kind of special fish in the East Lake where is closed to ...

  4. CF1139E Maximize Mex(二分图匹配,匈牙利算法)

    好题.不过之前做过的[SCOI2010]连续攻击游戏跟这题一个套路,我怎么没想到…… 题目链接:CF原网 洛谷 题目大意:在一个学校有 $n$ 个学生和 $m$ 个社团,每个学生有一个非负整数能力值 ...

  5. F - Rain on your Parade - hdu 2389(二分图匹配,Hk算法)

    题意:给一些人和一些伞的坐标,然后每个人都有一定的速度,还有多少时间就会下雨,问最多能有多少人可以拿到伞. 分析:题意很明确,可以用每个人和伞判断一下是否能够达到,如果能就建立一个联系.不过这道题的数 ...

  6. 【模板】解决二分图匹配的强力算法——Hopcroft-Karp算法

    详细解释 参见:http://blog.csdn.net/wall_f/article/details/8248373 简要过程 HK算法可以当成是匈牙利算法的优化版,和dinic算法的思想比较类似. ...

  7. hdu2063 二分图匹配,匈牙利算法

    #include <stdio.h> #include <string.h> int n1,n2,m,ans; ]; //记录V2中的点匹配的点的编号 ]; //记录V2中的每 ...

  8. 二分图匹配(KM算法)n^4 分类: ACM TYPE 2014-10-04 11:36 88人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> #incl ...

  9. 二分图匹配(KM算法)n^3 分类: ACM TYPE 2014-10-01 21:46 98人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> const ...

  10. Codevs 1222 信与信封问题 二分图匹配,匈牙利算法

    题目: http://codevs.cn/problem/1222/ 1222 信与信封问题   时间限制: 1 s   空间限制: 128000 KB   题目等级 : 钻石 Diamond 题解 ...

随机推荐

  1. nmon Analyser分析仪

    nmon Analyser官网: https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power+System ...

  2. 数据库学习(四)with as (补充 nvl 和 count 函数)

    with as 的专业解释我这就不详细说明了,我这就梳理下我自己的实践应用,就是根据某个条件查询出结果集放在一个临时表里面,可以创建多个临时表,然后再从这些临时表中查询出要的数据. 参考资料:http ...

  3. 机器学习sklearn的快速使用--周振洋

    ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统 ...

  4. 图的同构 (Graph Isomorphism)

    整理摘自:https://www.jianshu.com/p/c33b5d1b4cd9 同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系.若这两个数学结构之间存在同 ...

  5. HDU 4722 Good Numbers(位数DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description If we sum up every digit of a number and the result can be exactly divided by 10, we say ...

  6. Python模块学习:logging 日志记录

    原文出处: DarkBull    许多应用程序中都会有日志模块,用于记录系统在运行过程中的一些关键信息,以便于对系统的运行状况进行跟踪.在.NET平台中,有非常著名的第三方开源日志组件log4net ...

  7. 软工实践Beta冲刺(5/7)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...

  8. Name node is in safe mode.

    刚才启动hadoop,然后执行rm -r命令,出现这个问题,标记为红色的部分意思是namenode是安全节点, [master@hadoop file]$ hadoop fs -rm -r  /inp ...

  9. 有关于PHP的基础知识

    (1) l  长字符串表示,必须放在“<<<heredoc”和 “heredoc;”之间.主要是<<<,其次是也可以不使用heredoc. l  “<< ...

  10. WCF身份验证一:消息安全模式之<Certificate>身份验证

    消息安全模式的证书身份验证方式,基于WSHttpBinding绑定协议的实现过程.主要内容:基本概念,然后是制作证书.服务端配置.客户端配置.总结.这里应该和Transport传输安全模式之证书身份验 ...