1. 人脸检测

  2. 人脸特征点提取

  3. 人脸对比,等于两张人脸对比,识别

封装的所有识别函数,直接看下面调用就好了。

# coding:utf-8
'''
本本次封装,我主要是做两张人脸对比。
就只人脸识别部分,简单应用。
# 调用注意事项,因为模型底层是外国人写的。所以路径图片名字千万别使用中文,这样它直接找不到
好像是OpenCV的问题吧,一直没有解决。中文他会乱码。真的坑。
''' import dlib
import cv2
import glob
import numpy as np class face_recognition:
'''
模型路径
predictor_path = "./face_model/shape_predictor_68_face_landmarks.dat"
face_rec_model_path = "./face_model/dlib_face_recognition_resnet_model_v1.dat" # 调用注意事项,因为模型底层是外国人写的。所以路径图片名字千万别使用中文,这样它直接找不到
好像是OpenCV的问题吧,一直没有解决。中文他会乱码。真的坑。
''' def __init__(self,predictor_path,face_rec_model_path):
self.predictor_path = predictor_path
self.face_rec_model_path = face_rec_model_path
self.detector = dlib.get_frontal_face_detector()
self.shape_predictor = dlib.shape_predictor(self.predictor_path)
self.face_rec_model = dlib.face_recognition_model_v1(self.face_rec_model_path) def face_detection(self,url_img_1,url_img_2):
img_path_list = [url_img_1,url_img_2]
dist = []
for img_path in img_path_list:
img = cv2.imread(img_path)
# 转换rgb顺序的颜色。
b, g, r = cv2.split(img)
img2 = cv2.merge([r, g, b])
# 检测人脸
faces = self.detector(img, 1)
if len(faces):
for index, face in enumerate(faces):
# # 提取68个特征点
shape = self.shape_predictor(img2, face)
# 计算人脸的128维的向量
face_descriptor = self.face_rec_model.compute_face_descriptor(img2, shape) dist.append(list(face_descriptor))
else:
pass
return dist # 欧式距离
def dist_o(self,dist_1,dist_2):
dis = np.sqrt(sum((np.array(dist_1)-np.array(dist_2))**2))
return dis def score(self,url_img_1,url_img_2):
url_img_1 = glob.glob(url_img_1)[0]
url_img_2 = glob.glob(url_img_2)[0]
data = self.face_detection(url_img_1,url_img_2)
goal = self.dist_o(data[0],data[1])
# 判断结果,如果goal小于0.6的话是同一个人,否则不是。我所用的是欧式距离判别
return 1-goal

  

调用封装识别函数进行,判别

# 调用 模型下载地址:http://dlib.net/files/
predictor_path = "./face_model/shape_predictor_68_face_landmarks.dat"
face_rec_model_path = "./face_model/dlib_face_recognition_resnet_model_v1.dat"
face_ = face_recognition(predictor_path,face_rec_model_path)
# img_1 = './faces/User.1.4.jpg'
# img_2 = './faces/User.1.46.jpg'
img_1 = './faces/fan.jpg'
img_2 = './faces/fan_2.jpg'
goal = face_.score(img_1,img_2)
print(goal)

  

这两张图片的距离为0.32左右,但是只要距离小于0.6就属于同一个人,所以对比结果还是比较好的。

关于dlib人脸对比,人脸识别的更多相关文章

  1. python3 百度AI-v3之 人脸对比 & 人脸检测 & 在线活体检测 接口

    #!/usr/bin/python3 # 百度人脸对比 & 人脸检测api-v3 import sys, tkinter.messagebox, ast import ssl, json,re ...

  2. Python3+Dlib实现简单人脸识别案例

    Python3+Dlib实现简单人脸识别案例 写在前边 很早很早之前,当我还是一个傻了吧唧的专科生的时候,我就听说过人脸识别,听说过算法,听说过人工智能,并且也出生牛犊不怕虎般的学习过TensorFl ...

  3. winds dlib人脸检测与识别库

    在人脸检测与人脸识别库中dlib库所谓是非常好的了.检测效果非常ok,下面我们来了解一下这个神奇的库吧! 第一步我们首先学会安装:dlib ,winds+pytho3.6.5  Windows不支持p ...

  4. 基于node.js人脸识别之人脸对比

    基于node.js人脸识别之人脸对比 Node.js简介 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 I/O ...

  5. 人工智能之基于face_recognition的人脸检测与识别

    不久乘高铁出行,看见高铁火车站已经实现了"刷脸进站",而且效率很高,很感兴趣,今天抽时间研究一下,其实没那么复杂. 我基本上是基于https://github.com/ageitg ...

  6. OpenCV 学习笔记 05 人脸检测和识别

    本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸) ...

  7. python人脸对比

    import sys  import ssl  from urllib import request,parse    # client_id 为官网获取的AK, client_secret 为官网获 ...

  8. vs2017 dlib19.3 opencv3.41 C++ 环境配置 人脸特征点识别

    身为一个.net程序员经过两天的采坑终于把人脸特征检测的项目跑通了,然后本文将以dlib项目中人脸特征检测工程为例,讲解dlib与opencv 在vs2017 C++ 项目中的编译与运行路径配置. 1 ...

  9. 基于OpenCv的人脸检测、识别系统学习制作笔记之三

    1.在windows下编写人脸检测.识别系统.目前已完成:可利用摄像头提取图像,并将人脸检测出来,未进行识别. 2.在linux下进行编译在windows环境下已经能运行的代码. 为此进行了linux ...

随机推荐

  1. ubuntu开启crontab日志

    今天发现Ubuntu的/var/log下没有cron日志,用下面的命令即可开启: -default.conf cron.*              /var/log/cron.log #将cron前 ...

  2. IDA动态调试SO文件

    1. 所需工具 IDA Pro 6.6. 安卓SDK工具 2. 模拟器设置 将ida所在目录的dbgsrv文件夹内的android_server文件push到模拟器中. 设置777属性 启动调试服务器 ...

  3. python发起请求提示UnicodeEncodeError

    具体错误: UnicodeEncodeError: 'latin-1' codec can't encode characters in position 73-74: Body ('测试') is ...

  4. C 计算金额

    #include <stdio.h> int main(int argc, char **argv) { \\定义两个变量 a金额 z跟票面 int a=0; int z=0;\\ 输入金 ...

  5. ASP NET Core --- 资源塑形, HATEOAS, Media Type

    参照 草根专栏- ASP.NET Core + Ng6 实战:https://v.qq.com/x/page/d07652pu1zi.html 一.Get返回资源塑形 1.添加集合塑形Enumerab ...

  6. Wordpress 设置后台自定义post 排序

    创建新的 Post type时,文章在后台默认使用 Titile 列进行升序排序,但是通常情况下我们需要按日期 Date 进行降序排序, function wpse_81939_post_types_ ...

  7. Python第二天 (数据类型,变量 )

    1. 把任意数据类型赋值给变量 在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量,例如: 例子:a = 123 # a是整数 prin ...

  8. Android 之Buletooth

    一:概要: Android提供了Buletooth的API ,通过API 我们可以进行如下的一些操作: 1.扫描其他的蓝牙设备 2.查询能配对的蓝牙设备 3.建立RFCOMM 通道 4.连接其他的蓝牙 ...

  9. java有几种对象(PO,VO,DAO,BO,POJO)

    首先,java有几种对象(PO,VO,DAO,BO,POJO) 一.PO:persistant object 持久对象,可以看成是与数据库中的表相映射的java对象.使用Hibernate来生成PO是 ...

  10. HighCharts中几种tooltip的显示格式

    推荐学习地址 => https://www.hcharts.cn/docs/basic-tooltip   https://api.hcharts.cn/#Highcharts.numberFo ...