题面

传送门

一句话题意:

给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$

设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lbrace S\rbrace (S\subseteq U, \lvert S \rvert =k))^T$的期望

重要思想

注意,在遇到包含

思路

首先,通过枚举$S$集合最小值选取哪个数,可以得到:

$Ans(k)=\sum_{i=1}^n \binom{n-i}{k-1} T^i$

然后,通过枚举$S$集合最小值至少是多少,并且每次累加比上一次还大的可能性,可以得到:

$Ans(k)=T\binom{n}{k}+\sum_{i=1}^{n-1} \binom{n-i}{k}T^i(T-1)$

发现这个式子的后面一部分可以表示成第一个式子:

$Ans(k)=T\binom{n}{k}+(T-1)Ans(k+1)$

从$Ans(n)$开始往下累加一下,可以得到:

$Ans(k)=T(\sum_{i=0}{n-k}\binom{n}{k+i}(T-1)i)=T(\sum_{i=k}n\binom{n}{k}(T-1){i-k}$

这个式子要$O(n-k)$的时间,做不了,考虑怎么把它变成能算的$O(k)$

考虑二项式定理:$\sum_{i=0}^n (T-1)i\binom{n}{i}=(T-1+1)n=T^n$

所以$Ans(k)=\frac{T}{(T-1)k}(Tn-\sum_{i=0}^{k-1} (T-1)^i\binom{n}{i})$

就可以直接算了

最后不要忘了除以$\binom{n}{k}$,求得是期望

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
inline int qpow(int a,int b){
int re=1;
while(b){
if(b&1) re=1ll*re*a%MOD;
a=1ll*a*a%MOD;b>>=1;
}
return re;
}
int n,k,A;int f[10000010],finv[10000010];
void init(){
int i,len=10000000;
f[0]=f[1]=finv[0]=finv[1]=1;
for(i=2;i<=len;i++) f[i]=1ll*f[i-1]*i%MOD;
finv[len]=qpow(f[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
for(i=1;i<=k;i++) f[i]=1ll*f[i-1]*(n-i+1)%MOD;
}
int C(int x,int y){
return 1ll*f[y]*finv[y]%MOD;
}
int main(){
n=read();k=read();A=read();
if(A==1){puts("1");return 0;}
init();int i,ans=1ll*A*qpow(qpow(A-1,k),MOD-2)%MOD,tot=qpow(A,n),p=1;
for(i=0;i<k;i++){
tot=(1ll*tot-1ll*p*C(n,i)%MOD+MOD)%MOD;
p=1ll*p*(A-1)%MOD;
}
printf("%lld\n",1ll*ans*tot%MOD*qpow(C(n,k),MOD-2)%MOD);
}

[NOI.AC省选模拟赛3.23] 集合 [数学]的更多相关文章

  1. [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]

    题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...

  2. NOI.AC省选模拟赛第一场 T1 (树上高斯消元)

    link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...

  3. [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]

    题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...

  4. [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]

    题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...

  5. [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]

    题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...

  6. [noi.ac省选模拟赛]第12场题解集合

    题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...

  7. [noi.ac省选模拟赛]第10场题解集合

    题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...

  8. [noi.ac省选模拟赛]第11场题解集合

    题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...

  9. [noi.ac省选模拟赛20200606]赌怪

    题目   点这里看题目. 分析   先特判掉\(K=2\)的情况.   首先可以考虑到一个简单 DP :   \(f(i)\):前\(i\)张牌的最大贡献.   转移可以\(O(n^2)\)地枚举区间 ...

随机推荐

  1. web开发学习路线

    第一阶段: HTML+CSS: HTML进阶.CSS进阶.div+css布局.HTML+css整站开发. JavaScript基础: Js基础教程.js内置对象常用方法.常见DOM树操作大全.ECMA ...

  2. py函数初识

    一. 什么是函数 1. 我们到目前为止, 已经可以完成一些软件的基础功能了. 那么我们来完成这样一个功能: 约x print("拿出手机") print("打开陌&quo ...

  3. grep用法小结

    用法 grep [OPTIONS] PATTERN [FILE...] grep [OPTIONS] -e PATTERN ... [FILE...] grep [OPTIONS] -f FILE . ...

  4. struts2官方 中文教程 系列八:异常处理

    在本教程中,我们将探讨如何启用Struts 2框架处理web应用程序生成的任何未捕获的异常.Struts 2提供了健壮的异常处理,包括能够自动记录任何未捕获的异常,并将用户重定向到错误web页面. 贴 ...

  5. PIC32MZ 通过U盘在线升级 -- USB Host bootloader

    了解bootloader的实现,请加QQ: 1273623966(验证填bootloader); 欢迎咨询或定制bootloader; 我的博客主页 www.cnblogs.com/geekygeek ...

  6. 记一次艰难的CTP调试

    一个atmel,mxt540e的CTP触摸屏. 中断配置为下降沿,输入上拉. 总是只能触发一次中断,中断脚就一直低电平,无法拉高.这只是表面现象   不停找底层I2C驱动,改代码,没用.要靠波形来说话 ...

  7. node 发送 post 请求 get请求。

    因为我们部门打算用node请求restful 然后慢慢替换掉服务端,以后直接请求soa的接口,让前端的数据更贴切项目,因为我们服务端接口和app公用一套,由于业务的需求和版本不统一(例如app6.4的 ...

  8. ubuntu自带的ibus输入法问题解决方法

    ubuntu自带的ibus有点问题,输入字的时候不知道是个什么模式. 在网上搜到一个解决方法. 终端下执行: ibus-daemon -drx 然后切换到拼音输入法,就正常了. 写下作为记录.

  9. CSS3 : box-shadow

    box-shadow 用于设置边框阴影,语法: box-shadow: h-shadow v-shadow blur spread color inset; -moz-box-shadow: h-sh ...

  10. (转) Unreal Engine 4 Custom Shaders Tutorial

    说明: 1.这里的Custom Shaders 为且仅为 Custom Node的使用和USF的包含.并非全局Shader和Material Shader. 2.原文来源:https://www.ra ...