题面

传送门

一句话题意:

给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$

设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lbrace S\rbrace (S\subseteq U, \lvert S \rvert =k))^T$的期望

重要思想

注意,在遇到包含

思路

首先,通过枚举$S$集合最小值选取哪个数,可以得到:

$Ans(k)=\sum_{i=1}^n \binom{n-i}{k-1} T^i$

然后,通过枚举$S$集合最小值至少是多少,并且每次累加比上一次还大的可能性,可以得到:

$Ans(k)=T\binom{n}{k}+\sum_{i=1}^{n-1} \binom{n-i}{k}T^i(T-1)$

发现这个式子的后面一部分可以表示成第一个式子:

$Ans(k)=T\binom{n}{k}+(T-1)Ans(k+1)$

从$Ans(n)$开始往下累加一下,可以得到:

$Ans(k)=T(\sum_{i=0}{n-k}\binom{n}{k+i}(T-1)i)=T(\sum_{i=k}n\binom{n}{k}(T-1){i-k}$

这个式子要$O(n-k)$的时间,做不了,考虑怎么把它变成能算的$O(k)$

考虑二项式定理:$\sum_{i=0}^n (T-1)i\binom{n}{i}=(T-1+1)n=T^n$

所以$Ans(k)=\frac{T}{(T-1)k}(Tn-\sum_{i=0}^{k-1} (T-1)^i\binom{n}{i})$

就可以直接算了

最后不要忘了除以$\binom{n}{k}$,求得是期望

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
inline int qpow(int a,int b){
int re=1;
while(b){
if(b&1) re=1ll*re*a%MOD;
a=1ll*a*a%MOD;b>>=1;
}
return re;
}
int n,k,A;int f[10000010],finv[10000010];
void init(){
int i,len=10000000;
f[0]=f[1]=finv[0]=finv[1]=1;
for(i=2;i<=len;i++) f[i]=1ll*f[i-1]*i%MOD;
finv[len]=qpow(f[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
for(i=1;i<=k;i++) f[i]=1ll*f[i-1]*(n-i+1)%MOD;
}
int C(int x,int y){
return 1ll*f[y]*finv[y]%MOD;
}
int main(){
n=read();k=read();A=read();
if(A==1){puts("1");return 0;}
init();int i,ans=1ll*A*qpow(qpow(A-1,k),MOD-2)%MOD,tot=qpow(A,n),p=1;
for(i=0;i<k;i++){
tot=(1ll*tot-1ll*p*C(n,i)%MOD+MOD)%MOD;
p=1ll*p*(A-1)%MOD;
}
printf("%lld\n",1ll*ans*tot%MOD*qpow(C(n,k),MOD-2)%MOD);
}

[NOI.AC省选模拟赛3.23] 集合 [数学]的更多相关文章

  1. [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]

    题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...

  2. NOI.AC省选模拟赛第一场 T1 (树上高斯消元)

    link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...

  3. [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]

    题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...

  4. [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]

    题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...

  5. [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]

    题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...

  6. [noi.ac省选模拟赛]第12场题解集合

    题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...

  7. [noi.ac省选模拟赛]第10场题解集合

    题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...

  8. [noi.ac省选模拟赛]第11场题解集合

    题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...

  9. [noi.ac省选模拟赛20200606]赌怪

    题目   点这里看题目. 分析   先特判掉\(K=2\)的情况.   首先可以考虑到一个简单 DP :   \(f(i)\):前\(i\)张牌的最大贡献.   转移可以\(O(n^2)\)地枚举区间 ...

随机推荐

  1. QP之QF原理

    1.QP简介: 量子平台(Quantum Platform, 简称QP)是一个用于实时嵌入式系统的软件框架,QP是轻量级的.开源的.基于层次式状态机的.事件驱动的平台. QP包括事件处理器(QEP). ...

  2. 机器学习基础之knn的简单例子

    knn算法是人工智能的基本算法,类似于语言中的"hello world!",python中的机器学习核心模块:Scikit-Learn Scikit-learn(sklearn)模 ...

  3. 安装java 和 eclipse

    昨天安装eclipse出现个问题, 安装完了创建第一个项目目录的时候弹窗报错an ......什么什么, 百度一堆没有用,后来发现是jdk12不支持,换了jdk8就可以了, 然后eclipse安装py ...

  4. ruby 数据类型Symbol

    一.符号创建 符号是Symbol类的实例,使用冒号加一个标识符即可创建符号 :a :"This is a symno" 二.符号字符串相互转换 p :symbol.to_s #=& ...

  5. Java学习笔记六:Java的流程控制语句之if语句

    Java的流程控制语句之if语句 一:Java条件语句之if: 我们经常需要先做判断,然后才决定是否要做某件事情.例如,如果考试成绩大于 90 分,则奖励一朵小红花 .对于这种“需要先判断条件,条件满 ...

  6. HDU1209:Clock

    参考:https://blog.csdn.net/libin56842/article/details/8990530 https://blog.csdn.net/u011479875/article ...

  7. 最短路径算法 2.Dijkstra算法

    Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值.该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高. 算法 ...

  8. LeetCode算法1—— 两数之和

    给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], target ...

  9. python基础之进程间通信、进程池、协程

    进程间通信 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 进程队列queue 不同于线程queue,进程 ...

  10. WPF把CheckBox的文字放到左边,开关在右边

    原文:WPF把CheckBox的文字放到左边,开关在右边 效果 实现 这篇文章给了一个不错的参考方案. http://www.codeproject.com/Articles/19141/WPF-Ch ...