题目描述

给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。

输入输出格式

输入格式:

件第1 行有2个正整数n和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

输出格式:

从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。

输入输出样例

输入样例#1:

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11

输出样例#1:

1 4 7 10 11
2 5 8
3 6 9
3

题解

先假设每个点是一条路径,那么现在有n条路径。

然后考虑一些路径的合并,显然合并尽可能多的路径可以最小化路径条数。

然后考虑网络流建模,对于每个点拆成两个,连二分图

对于边<u,v>,连<\(u_x,v_y\)>,容量为1 。

对于\(x\)的点,连<\(s,x\)>,对于\(y\),连<\(y,t\)>,容量都为1,这样可以保证每一个点只连一条边出去,只有一条边连向它。

这样,每条增广路都只经过两个点,可以看成合并两条链。

然后求最大流,答案就是\(n-max\_flow\).

#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define maxn 5050
const int inf=2e9; int n,m,s,t,head[maxn],tot=1,dis[2004],vis[2004],max_flow;
struct edge{int to,nxt,w;}e[maxn<<1]; void add(int u,int v,int w) {e[++tot]=(edge){v,head[u],w},head[u]=tot;}
void ins(int u,int v,int w) {add(u,v,w),add(v,u,0);} int bfs() {
memset(vis,0,sizeof vis);
memset(dis,63,sizeof dis);
queue<int > q;q.push(s),dis[s]=0,vis[s]=1;
while(!q.empty()) {
int now=q.front();q.pop(),vis[now]=0;
for(int i=head[now];i;i=e[i].nxt)
if(dis[e[i].to]>dis[now]+1&&e[i].w>0) {
dis[e[i].to]=dis[now]+1;
if(!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
}
}return dis[t]<1e9;
} int dfs(int x,int f) {
if(x==t) return vis[x]=1,f;
vis[x]=1;int used=0;
for(int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].to]&&e[i].w>0&&dis[e[i].to]==dis[x]+1) {
int d=dfs(e[i].to,min(f-used,e[i].w));
if(d>0) used+=d,e[i].w-=d,e[i^1].w+=d;
if(used==f) break;
}
return used;
} void dinic() {
while(bfs()) {
vis[t]=1;
while(vis[t]) memset(vis,0,sizeof vis),max_flow+=dfs(s,inf);
}
} int nxt[maxn],pre[maxn]; int main() {
read(n),read(m);s=0,t=n*2+1;
for(int i=1,x,y;i<=m;i++) read(x),read(y),ins(x,y+n,1);
for(int i=1;i<=n;i++) ins(s,i,1),ins(i+n,t,1);
dinic();
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
if(e[j].to!=s&&e[j].w==0) nxt[i]=e[j].to-n,pre[e[j].to-n]=i;
memset(vis,0,sizeof vis);
for(int i=1;i<=n;i++)
if(!vis[i]) {
int now=i;
while(pre[now]) now=pre[now];
while(nxt[now]) printf("%d ",now),vis[now]=1,now=nxt[now];
printf("%d\n",now);vis[now]=1;
}
write(n-max_flow);
return 0;
}

luogu P2764 最小路径覆盖问题的更多相关文章

  1. Luogu P2764 最小路径覆盖问题(二分图匹配)

    P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...

  2. LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)

    解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match​$就行了. #incl ...

  3. 【luogu P2764 最小路径覆盖问题】 模板

    题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...

  4. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  5. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  6. P2764 最小路径覆盖问题 网络流重温

    P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...

  7. 【Luogu】P2764最小路径覆盖(拆点求最大匹配)

    题目链接 这个……学了一条定理 最小路径覆盖=原图总点数-对应二分图最大匹配数 这个对应二分图……是什么呢? 就是这样 这是原图 这是拆点之后对应的二分图. 然后咱们的目标就是从这张图上跑出个最大流来 ...

  8. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  9. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

随机推荐

  1. Angular : 绑定, 参数传递, 路由

    如何把jquery导入angular npm install jquery --savenpm install @type/jquery --save-dev "node_modules/z ...

  2. hadoop生态搭建(3节点)-03.zookeeper配置

    # https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html # ===== ...

  3. hadoop搭建----centos免密码登录、修改hosts文件

    分布式系统在传输数据时需要多台电脑免密码登录 如:A(192.168.227.12)想ssh免密码登录到B(192.168.227.12),需要把A的公钥文件(~/.ssh/id_rsa.pub)里内 ...

  4. python 用装饰器写登录

    # 1.编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件), # 要求登录成功一次,后续的函数都无需再输入用户名和密码 # FLAG = False # def login(func): ...

  5. 通过SVI实现VLAN间通信

    两个不同网段的计算机与三层交换机直连,通过SVI实现VLAN间通信vlan 1 //几个不同网段就创建几个VLANvlan 2 int f0/1 //划分VLANswitchport mode acc ...

  6. 将List中的数据更新到数据库中

    List中有相应的数据,更新到数据库如下: 1.根据关键字查找后删除: foreach (var item in objSelList) { ADDaAn da = db.ADDaAns.Find(i ...

  7. [KAFKA]kafka常用操作

    -- kafka路径示例 /opt/cloudera/parcels/KAFKA/bin-- kafka启动./kafka-server-start.sh -daemon ../config/serv ...

  8. P1215 [USACO1.4]母亲的牛奶 Mother's Milk

    P1215 [USACO1.4]母亲的牛奶 Mother's Milk 题目描述 农民约翰有三个容量分别是A,B,C升的桶,A,B,C分别是三个从1到20的整数, 最初,A和B桶都是空的,而C桶是装满 ...

  9. kettle 遇到 解决Incorrect integer value: '' for column 'id' at row 1 完美解决-费元星

    最近自己在测试一个开源的程序,测试中发现.该程序都添加和更新的时候回出现 Incorrect integer value: '' for column 'id' at row 1类是的错误! 后来我自 ...

  10. valgrind检查still reachable情况

    valgrind --leak-check=yes检查bufr编解码程序运行时提示still reachable: 568 bytes in 1 blocks,如下图示: 于是怀疑有内存泄漏,难道是m ...