洛谷 P3381【模板】最小费用最大流
题目描述
如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。
输入输出格式
输入格式:
第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。
接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。
输出格式:
一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。
输入输出样例
输入样例#1:
4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5
输出样例#1:
50 280
说明
时空限制:1000ms,128M
(BYX:最后两个点改成了1200ms)
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=1000,M<=1000
对于100%的数据:N<=5000,M<=50000
样例说明:

如图,最优方案如下:
第一条流为4-->3,流量为20,费用为3*20=60。
第二条流为4-->2-->3,流量为20,费用为(2+1)*20=60。
第三条流为4-->2-->1-->3,流量为10,费用为(2+9+5)*10=160。
故最大流量为50,在此状况下最小费用为60+60+160=280。
故输出50 280。
思路:费用流的模板题,就是在最大流中用 spfa或dijkstra等算法来代替,不同的是费用 流在管流量的同时也要管边权,所以,可以说算是最大流的升级版吧,我目前还只会 spfa版本的,dijkstra的还不太会写。
代码:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define maxn 5007
using namespace std;
int num=1,n,m,head[maxn],pre[maxn],dis[maxn],vis[maxn],maxflow,ans,S,T;
const int inf=0x3f3f3f3f;
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int u,v,f,w,nxt;
}e[maxn*20];
inline void ct(int u, int v, int f, int w) {
e[++num]=node{u,v,f,w,head[u]};
head[u]=num;
}
inline bool bfs() {
memset(vis,0,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
queue<int>q;
q.push(S),dis[S]=0;
while(!q.empty()) {
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v,f=e[i].f;
if(dis[v]>dis[u]+e[i].w&&f) {
dis[v]=dis[u]+e[i].w;
pre[v]=i;
if(!vis[v]) {
vis[v]=1;
q.push(v);
}
}
}
}
return dis[T]!=inf;
}
inline void work() {
int minn=inf;
for(int i=T;i!=S;i=e[pre[i]].u)
minn=min(minn,e[pre[i]].f);
for(int i=T;i!=S;i=e[pre[i]].u) {
e[pre[i]].f-=minn;
e[pre[i]^1].f+=minn;
ans+=minn*e[pre[i]].w;
}
maxflow+=minn;
}
int main() {
n=qread(),m=qread(),S=qread(),T=qread();
for(int i=1;i<=m;++i) {
int u=qread(),v=qread(),f=qread(),w=qread();
ct(u,v,f,w),ct(v,u,0,-w);
}
while(bfs()) work();
printf("%d %d\n",maxflow,ans);
return 0;
}
洛谷 P3381【模板】最小费用最大流的更多相关文章
- 洛谷P3381 (最小费用最大流模板)
记得把数组开大一点,不然就RE了... 1 #include<bits/stdc++.h> 2 using namespace std; 3 #define int long long 4 ...
- 洛谷.3381.[模板]最小费用最大流(zkw)
题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...
- P3381 [模板] 最小费用最大流
EK + dijkstra (2246ms) 开氧气(586ms) dijkstra的势 可以处理负权 https://www.luogu.org/blog/28007/solution-p3381 ...
- 【洛谷 p3381】模板-最小费用最大流(图论)
题目:给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 解法:在Dinic的基础下做spfa算法. 1 #include<cst ...
- 洛谷.4897.[模板]最小割树(Dinic)
题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...
- 网络流_spfa最小费用最大流
最大流: 不断搜索增广路,寻找最小的容量-流量,得到最大流量,但最大流量在有花费时不一定是最小花费. 最小费用最大流 算法思想: 采用贪心的思想,每次找到一条从源点到达汇点的花费最小的路径,增加流量, ...
- 洛谷P3381 最小费用最大流模板
https://www.luogu.org/problem/P3381 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用 ...
- 洛谷P3381 - 【模板】最小费用最大流
原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...
- P3381 【模板】最小费用最大流
P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...
- 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)
题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...
随机推荐
- uboot启动正常,加载内核kernel启…
先说现象吧:uboot能够正常启动,不过在kernel启动时却出现起不了的现象,停在这里 Uncompressing Linux.................................... ...
- 动态绑定事件-on
动态绑定事件 $(document).on("各种事件(如click.mousemove...)","事件对象(比如我点击class为.close的div,那么这里就是. ...
- Python:cmd传参
假如你写了一个文件test.py,你需要三个参数,你运行时: python test.py arg1 arg2 arg3 在test.py中读取这几个参数: import sys print 'Num ...
- ArcGIS Engine中如何获取Map中已经选择的要素呢(转)
ArcGIS Engine中如何获取Map中已经选择的要素呢 1.使用IEnumFeturea对象获取map中的FeatureSelection,该方法可以获取所有图层的选择要素.IMap中的Fe ...
- mybatis 框架 的简单使用
# Global logging configuration #在开发环境下日志级别要设置成DEBUG,生产环境设置成info或error log4j.rootLogger=DEBUG, stdout ...
- 【转】浏览器中F5和CTRL F5的行为区别
原文地址:http://www.cnblogs.com/jiji262/p/3410518.html 前言 在印象中,浏览器中的F5和刷新按钮是一样的效果,都是对当前页面进行刷新:Ctrl-F5的行为 ...
- 6.AND & OR 运算符
AND 和 OR 运算符用于基于一个以上的条件对记录进行过滤 AND 和 OR 运算符 AND 和 OR 可在 WHERE 子语句中把两个或多个条件结合起来. 如果第一个条件和第二个条件都成立,则 A ...
- HttpUploader6.2-process版本
1.优化JS逻辑,在上传前先同步相同文件进度,提高多用户上传效率. 2.优化文件块保存逻辑,减少相同文件块的写入操作,减少服务器IO操作,提高上传效率. js变化: up6.js新增UrlQuer ...
- 文字相对于 div 垂直居中
通用方法 height 跟line-height div{ border: 1px solid black; text-align: left; height: 200px; line-height ...
- 【转】android 布局优化
前言 本篇文章为Android优化的布局部分,该部分应该是Android中很重要的,无论是在自定义控件中,还是在简单的书写布局时,都应该尽量遵循一些优化原则,这样布局的绘制效率才会更高,体验才能更好. ...