Time Limit: 330MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu

Description

You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations: 
modify the i-th element in the sequence or for given x y print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

Input

The first line of input contains an integer N. The following line contains N integers, representing the sequence A1..AN. 
The third line contains an integer M. The next M lines contain the operations in following form:
0 x y: modify Ax into y (|y|<=10000).
1 x y: print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

Output

For each query, print an integer as the problem required.

Example

Input:
4
1 2 3 4
4
1 1 3
0 3 -3
1 2 4
1 3 3 Output:
6
4
-3

Hint

Added by: Bin Jin
Date: 2007-08-03
Time limit: 0.330s
Source limit: 5000B
Memory limit: 1536MB
Cluster: Cube (Intel G860)
Languages: All except: C++ 5
Resource: own problem

单点修改,询问区间内最大连续字段和。

@TYVJ P1427 小白逛公园

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define lc rt<<1
#define rc rt<<1|1
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int data[mxn];
struct node{
int mx;
int ml,mr;
int smm;
}t[mxn<<],tmp0;
void push_up(int l,int r,int rt){
t[rt].smm=t[lc].smm+t[rc].smm;
t[rt].mx=max(t[lc].mx,t[rc].mx);
t[rt].mx=max(t[lc].mr+t[rc].ml,t[rt].mx);
t[rt].ml=max(t[lc].ml,t[lc].smm+t[rc].ml);
t[rt].mr=max(t[rc].mr,t[rc].smm+t[lc].mr);
return;
}
void Build(int l,int r,int rt){
if(l==r){t[rt].mx=t[rt].ml=t[rt].mr=data[l];t[rt].smm=data[l];return;}
int mid=(l+r)>>;
Build(l,mid,lc);
Build(mid+,r,rc);
push_up(l,r,rt);
return;
}
void change(int p,int v,int l,int r,int rt){
if(l==r){
if(p==l){t[rt].ml=t[rt].mr=t[rt].mx=t[rt].smm=v;}
return;
}
int mid=(l+r)>>;
if(p<=mid)change(p,v,l,mid,lc);
else change(p,v,mid+,r,rc);
push_up(l,r,rt);
return;
}
node query(int L,int R,int l,int r,int rt){
// printf("%d %d %d %d %d\n",L,R,l,r,rt);
if(L<=l && r<=R){return t[rt];}
int mid=(l+r)>>;
node res1;
if(L<=mid)res1=query(L,R,l,mid,lc);
else res1=tmp0;
node res2;
if(R>mid)res2=query(L,R,mid+,r,rc);
else res2=tmp0;
node res={};
res.smm=res1.smm+res2.smm;
res.mx=max(res1.mx,res2.mx);
res.mx=max(res.mx,res1.mr+res2.ml);
res.ml=max(res1.ml,res1.smm+res2.ml);
res.mr=max(res2.mr,res2.smm+res1.mr);
return res;
}
int main(){
n=read();
int i,j,x,y,k;
for(i=;i<=n;i++)data[i]=read();
Build(,n,);
tmp0.ml=tmp0.mr=tmp0.mx=-1e9;tmp0.smm=;
m=read();
for(i=;i<=m;i++){
k=read();x=read();y=read();
if(k){
if(x>y)swap(x,y);
printf("%d\n",query(x,y,,n,).mx);
}
else change(x,y,,n,);
}
return ;
}

SPOJ GSS3 Can you answer these queries III的更多相关文章

  1. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  2. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  3. SPOJ GSS3 Can you answer these queries III ——线段树

    [题目分析] GSS1的基础上增加修改操作. 同理线段树即可,多写一个函数就好了. [代码] #include <cstdio> #include <cstring> #inc ...

  4. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  5. GSS3 SPOJ 1716. Can you answer these queries III gss1的变形

    gss2调了一下午,至今还在wa... 我的做法是:对于询问按右区间排序,利用splay记录最右的位置.对于重复出现的,在splay中删掉之前出现的位置所在的节点,然后在splay中插入新的节点.对于 ...

  6. spoj 1557 GSS3 - Can you answer these queries III 线段树

    题目链接 给出n个数, 2种操作, 一种是将第x个数改为y, 第二种是询问区间[x,y]内的最大连续子区间. 开4个数组, 一个是区间和, 一个是区间最大值, 一个是后缀的最大值, 一个是前缀的最大值 ...

  7. SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)

    题意翻译 nnn 个数, qqq 次操作 操作0 x y把 AxA_xAx​ 修改为 yyy 操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和 题目描述 You are give ...

  8. GSS3 - Can you answer these queries III

    题意翻译 nnn 个数, qqq 次操作 操作0 x y把 AxA_xAx​ 修改为 yyy 操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和 感谢 @Edgration 提供的 ...

  9. SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树

    GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...

随机推荐

  1. Could not load file or assembly 'System.Data.SQLite' or one of its dependencies

    试图加载格式不正确的程 异常类型 异常消息Could not load file or assembly 'System.Data.SQLite' or one of its dependencies ...

  2. PHP中WEB典型应用技术

    主要讲5个方面: PHP与web页面的交互:表单传值,文件的上传与下载 http协议 PHP的会话技术:cookie和session PHP的图像技术:GD库,图像的常见的制作和操作,验证码,二维码, ...

  3. Android中的Semaphore

    信号量,了解过操作系统的人都知道,信号量是用来做什么的··· 在Android中,已经提供了Semaphore来帮助我们使用~ 那么,在开发中这家伙有什么用呢? 用的地方不多,但是却真的是好用至极! ...

  4. PHP 依赖注入,从此不再考虑加载顺序

    说这个话题之前先讲一个比较高端的思想--'依赖倒置原则' "依赖倒置是一种软件设计思想,在传统软件中,上层代码依赖于下层代码,当下层代码有所改动时,上层代码也要相应进行改动,因此维护成本较高 ...

  5. 学习SQLite之路(五) C/C++ SQLite开发实例

    介绍一种乌班图中使用sqlite的用法,非常简单,下面的例子是在乌班图12.04中实现的: 1,先安装两个东西: sudo apt-get install sqlite sqlite3 sudo ap ...

  6. Java网络编程——TCP/UDP

    UDP:面向无连接 ☆ 将数据及源地址和目的地址封装成数据包中 ☆ 每个数据报的大小限制在64K ☆ 不可靠协议 ☆ 不需要建立连接,速度快 TCP:面向有连接 ☆ 建立连接,形成传输数据的通道 ☆ ...

  7. android定时器

    Handler+Timer+TimerTask 三.采用Handler与timer及TimerTask结合的方法. 1.定义定时器.定时器任务及Handler句柄 private final Time ...

  8. [Google Guava]学习--新集合类型Multimap

    每个有经验的Java程序员都在某处实现过Map<K, List<V>>或Map<K, Set<V>>,并且要忍受这个结构的笨拙. 假如目前有个需求是给两 ...

  9. Question2Answer安装

    Question2Answer安装 Question2Answer的安装过程很简单,只需要几分钟的时间你就可以有一个强大的问答系统. 安装要求 Web服务器(比如Apache) PHP 4.3 或更高 ...

  10. iOS开发--利用MPMoviePlayerViewController播放视频简单实现

    一.MPMoviePlayerViewController和MPMoviePlayerController区分开,前者继承自NSObject,后者继承自UIViewController 二.MPMov ...