HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842
题目大意:棒子上套环。第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上。每个环可以取下或放上,cost=1。求最小cost。MOD 200907。
解题思路:
递推公式
题目意思非常无聊,感觉是YY的。
设$dp[i]$为取第i个环时的总cost。
$dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的。
从i=3开始,由于条件对最后的环限制最大,所以从最后一个环开始取。
$p[3]=5$(先取下第一个环,然后第三个环,然后放上第一个环,然后取下第二个环,然后取下第一个环)
$dp[4]=10$(规律是:取i环花费1,依赖花费$dp[i-1]$、$2*dp[i-2]$)
所以$dp[i]=dp[i-1]+2*dp[i-2]+1$
矩阵快速幂
任何递推数列都能构造矩阵求解,有N个参数的通项公式,至少需要构造$1*N$的矩阵
考虑到矩阵乘法的维数限制$[N,M]*[M,P]$,通常构造成$N*N$的矩阵。
构造方法就是按矩阵乘法的特性,先构造出幂矩阵第一列,然后YY出剩余列。
本题构造如下:
$\begin{bmatrix}f2 & f1 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}1 & 1&0 \\ 2 & 0&0 \\ 1& 0 &1 \end{bmatrix}=\begin{bmatrix}f3 & f2&1 \\
0 & 0&0 \\ 0& 0 &0\end{bmatrix}$
特判n=1、n=2,从n=3开始,幂(n-2)次,乘以基础f2、f1的矩阵。
代码
#include "cstdio"
#include "cstring"
#define LL long long
#define mod 200907
#define K 3
struct Matrix
{
LL mat[K][K];
Matrix() {memset(mat,,sizeof(mat));}
Matrix(LL *val)
{
int idx=;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
mat[i][j]=val[idx++];
}
};
Matrix operator * (Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
{
ret.mat[i][j]=;
for(int k=;k<K;k++)
ret.mat[i][j]+=((a.mat[i][k]*b.mat[k][j])%mod);
}
return ret;
}
Matrix operator ^ (Matrix a,int n)
{
Matrix ret,base=a;
for(int i=;i<K;i++) ret.mat[i][i]=;
while(n)
{
if(n&) ret=ret*base;
base=base*base;
n>>=;
}
return ret;
}
int main()
{
//freopen("in.txt","r",stdin);
LL n;
while(scanf("%I64d",&n)&&n)
{
if(n==) printf("1\n");
else if(n==) printf("2\n");
else
{
LL bval[]={,,,,,,,,};
LL pval[]={,,,,,,,,};
Matrix Base(bval),Pow(pval),ans=Pow^(n-);
ans=Base*ans;
printf("%I64d\n",ans.mat[][]%mod);
}
}
}
HDU 2842 (递推+矩阵快速幂)的更多相关文章
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- hdu 6185 递推+矩阵快速幂
思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下) 假设 ...
- HDU Queuing(递推+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- [hdu 2604] Queuing 递推 矩阵快速幂
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...
- HDU6030 Happy Necklace(递推+矩阵快速幂)
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
随机推荐
- vim、gvim加载文件慢
1. strace -f -T -o vim.strace vim 2. vim --startuptime "vim-time.txt" 3. gvim -f
- 【译】DotNet 5.4或者说 .NET平台标准
原文:DotNet 5.4 or .NET Platform Standards 是的,你看到的确实是"DotNet 5.4".使用Visual Studio 2015 RC1 u ...
- javascript中求浏览器窗口可视区域兼容性写法
1.浏览器窗口可视区域大小 1.1 对于IE9+.Chrome.Firefox.Opera 以及 Safari:• window.innerHeight - 浏览器窗口的内部高度• window. ...
- FrameLayout
FrameLayout是最简单的布局了. ① 所有放在布局里的控件,都按照层次堆叠在屏幕的左上角.后加进来的控件覆盖前面的控件. ② 该布局container可以用来占有屏幕的某块区域来显示单一的对象
- Database.com SOQL and SOSL Reference
如下是关于 SOQ L与 SOSL 的相关链接: http://docs.database.com/dbcom/en-us/db_sosl_soql/sforce_api_calls_soql.htm ...
- python web编程-web客户端编程
web应用也遵循客户服务器架构 浏览器就是一个基本的web客户端,她实现两个基本功能,一个是从web服务器下载文件,另一个是渲染文件 同浏览器具有类似功能以实现简单的web客户端的模块式urllib以 ...
- 关于html中的设置body宽高的理解
有时候看到别人的代码中经常出现在body中设置的宽高,不是很理解,于是自己测试了下,瞬间懂了,废话不多说,直接上代码: 首先创建好一个基本的html文件,设body的背景色为red: 相信大家都知道效 ...
- connot resolve symbol R
出现这个原因大都是layout里的xml文件出错,就不会自动生成R文件
- 视觉差双排listview效果
https://github.com/bavariama1/ListBuddies
- 【T_SQL】 基础 事务
1.使用 T-SQL 语句来管理事务 开始事务:BEGIN TRANSACTION 提交事务:COMMIT TRANSACTION 回滚(撤销)事务:ROLLBAC ...