Lua 5.3 的中文手册, http://cloudwu.github.io/lua53doc 在线浏览

--第一部分

-- 两个横线开始单行的注释
--[[
加上两个[和]表示
多行的注释。
--]]
---------------------------------------------------
-- 1. 变量和流控制。
---------------------------------------------------- num = -- 所有的数字都是double。
-- 别担心,double的64位中有52位用于
-- 保存精确的int值; 对于需要52位以内的int值,
-- 机器的精度不是问题。 s = 'walternate' -- 像Python那样的不可变的字符串。
t = "双引号也可以"
u = [[ 两个方括号
用于
多行的字符串。]]
t = nil -- 未定义的t; Lua 支持垃圾收集。 -- do/end之类的关键字标示出程序块:
while num < do
num = num + -- 没有 ++ or += 运算符。
end -- If语句:
if num > then
print('over 40')
elseif s ~= 'walternate' then -- ~= 表示不等于。
-- 像Python一样,== 表示等于;适用于字符串。
io.write('not over 40\n') -- 默认输出到stdout。
else
-- 默认变量都是全局的。
thisIsGlobal = -- 通常用驼峰式定义变量名。 -- 如何定义局部变量:
local line = io.read() -- 读取stdin的下一行。 -- ..操作符用于连接字符串:
print('Winter is coming, ' .. line)
end -- 未定义的变量返回nil。
-- 这不会出错:
foo = anUnknownVariable -- 现在 foo = nil. aBoolValue = false --只有nil和false是fals; 0和 ''都是true!
if not aBoolValue then print('twas false') end -- 'or'和 'and'都是可短路的(译者注:如果已足够进行条件判断则不计算后面的条件表达式)。
-- 类似于C/js里的 a?b:c 操作符:
ans = aBoolValue and 'yes' or 'no' --> 'no' karlSum =
for i = , do -- 范围包括两端
karlSum = karlSum + i
end -- 使用 "100, 1, -1" 表示递减的范围:
fredSum =
for j = , , - do fredSum = fredSum + j end -- 通常,范围表达式为begin, end[, step]. -- 另一种循环表达方式:
repeat
print('the way of the future')
num = num -
until num == ----------------------------------------------------
-- 2. 函数。
---------------------------------------------------- function fib(n)
if n < then return end
return fib(n - ) + fib(n - )
end -- 支持闭包及匿名函数:
function adder(x)
-- 调用adder时,会创建用于返回的函数,并且能记住变量x的值:
return function (y) return x + y end
end
a1 = adder()
a2 = adder()
print(a1()) --> 25
print(a2()) --> 100 -- 返回值、函数调用和赋值都可以使用长度不匹配的list。
-- 不匹配的接收方会被赋为nil;
-- 不匹配的发送方会被忽略。 x, y, z = , , ,
-- 现在x = 1, y = 2, z = 3, 而 4 会被丢弃。 function bar(a, b, c)
print(a, b, c)
return , , , , ,
end x, y = bar('zaphod') --> prints "zaphod nil nil"
-- 现在 x = 4, y = 8, 而值15..42被丢弃。 -- 函数是一等公民,可以是局部或者全局的。
-- 下面是等价的:
function f(x) return x * x end
f = function (x) return x * x end -- 这些也是等价的:
local function g(x) return math.sin(x) end
local g; g = function (x) return math.sin(x) end
-- 'local g'可以支持g自引用。 -- 顺便提一下,三角函数是以弧度为单位的。 -- 用一个字符串参数调用函数,不需要括号:
print 'hello' --可以工作。 ----------------------------------------------------
-- 3. Table。
---------------------------------------------------- -- Table = Lua唯一的数据结构;
-- 它们是关联数组。
-- 类似于PHP的数组或者js的对象,
-- 它们是哈希查找表(dict),也可以按list去使用。 -- 按字典/map的方式使用Table: -- Dict的迭代默认使用string类型的key:
t = {key1 = 'value1', key2 = false} -- String的key可以像js那样用点去引用:
print(t.key1) -- 打印 'value1'.
t.newKey = {} -- 添加新的 key/value 对。
t.key2 = nil -- 从table删除 key2。 -- 使用任何非nil的值作为key:
u = {['@!#'] = 'qbert', [{}] = , [6.28] = 'tau'}
print(u[6.28]) -- 打印 "tau" -- 对于数字和字符串的key是按照值来匹配的,但是对于table则是按照id来匹配。
a = u['@!#'] -- 现在 a = 'qbert'.
b = u[{}] -- 我们期待的是 1729, 但是得到的是nil:
-- b = nil ,因为没有找到。
-- 之所以没找到,是因为我们用的key与保存数据时用的不是同一个对象。
-- 所以字符串和数字是可用性更好的key。 -- 只需要一个table参数的函数调用不需要括号:
function h(x) print(x.key1) end
h{key1 = 'Sonmi~451'} -- 打印'Sonmi~451'. for key, val in pairs(u) do -- Table 的遍历.
print(key, val)
end -- _G 是一个特殊的table,用于保存所有的全局变量
print(_G['_G'] == _G) -- 打印'true'. -- 按list/array的方式使用: -- List 的迭代方式隐含会添加int的key:
v = {'value1', 'value2', 1.21, 'gigawatts'}
for i = , #v do -- #v 是list的size
print(v[i]) -- 索引从 1 开始!! 太疯狂了!
end
-- 'list'并非真正的类型,v 还是一个table,
-- 只不过它有连续的整数作为key,可以像list那样去使用。 ----------------------------------------------------
-- 3.1 元表(metatable) 和元方法(metamethod)。
---------------------------------------------------- -- table的元表提供了一种机制,可以重定义table的一些操作。
-- 之后我们会看到元表是如何支持类似js的prototype行为。 f1 = {a = , b = } -- 表示一个分数 a/b.
f2 = {a = , b = } -- 这个是错误的:
-- s = f1 + f2 metafraction = {}
function metafraction.__add(f1, f2)
sum = {}
sum.b = f1.b * f2.b
sum.a = f1.a * f2.b + f2.a * f1.b
return sum
end setmetatable(f1, metafraction)
setmetatable(f2, metafraction) s = f1 + f2 -- 调用在f1的元表上的__add(f1, f2) 方法 -- f1, f2 没有能访问它们元表的key,这与prototype不一样,
-- 所以你必须用getmetatable(f1)去获得元表。元表是一个普通的table,
-- Lua可以通过通常的方式去访问它的key,例如__add。 -- 不过下面的代码是错误的,因为s没有元表:
-- t = s + s
-- 下面的类形式的模式可以解决这个问题: -- 元表的__index 可以重载点运算符的查找:
defaultFavs = {animal = 'gru', food = 'donuts'}
myFavs = {food = 'pizza'}
setmetatable(myFavs, {__index = defaultFavs})
eatenBy = myFavs.animal -- 可以工作!这要感谢元表的支持 -- 如果在table中直接查找key失败,会使用元表的__index 继续查找,并且是递归的查找 -- __index的值也可以是函数function(tbl, key) ,这样可以支持更多的自定义的查找。 -- __index、__add等等,被称为元方法。
-- 这里是table的元方法的全部清单: -- __add(a, b) for a + b
-- __sub(a, b) for a - b
-- __mul(a, b) for a * b
-- __div(a, b) for a / b
-- __mod(a, b) for a % b
-- __pow(a, b) for a ^ b
-- __unm(a) for -a
-- __concat(a, b) for a .. b
-- __len(a) for #a
-- __eq(a, b) for a == b
-- __lt(a, b) for a < b
-- __le(a, b) for a <= b
-- __index(a, b) <fn or a table> for a.b
-- __newindex(a, b, c) for a.b = c
-- __call(a, ...) for a(...)
--第二部分 ----------------------------------------------------
-- 3.2 类风格的table和继承。
---------------------------------------------------- -- 类并不是内置的;有不同的方法通过表和元表来实现。 -- 下面是一个例子,后面是对例子的解释 Dog = {} -- 1. function Dog:new() -- 2.
newObj = {sound = 'woof'} -- 3.
self.__index = self -- 4.
return setmetatable(newObj, self) -- 5.
end function Dog:makeSound() -- 6.
print('I say ' .. self.sound)
end mrDog = Dog:new() -- 7.
mrDog:makeSound() -- 'I say woof' -- 8. -- 1. Dog看上去像一个类;其实它完全是一个table。
-- 2. 函数tablename:fn(...) 与函数tablename.fn(self, ...) 是一样的
-- 冒号(:)只是添加了self作为第一个参数。
-- 下面的第7和第8条说明了self变量是如何得到其值的。
-- 3. newObj是类Dog的一个实例。
-- 4. self为初始化的类实例。通常self = Dog,不过继承关系可以改变这个。
-- 如果把newObj的元表和__index都设置为self,
-- newObj就可以得到self的函数。
-- 5. 记住:setmetatable返回其第一个参数。
-- 6. 冒号(:)在第2条是工作的,不过这里我们期望
-- self是一个实例,而不是类
-- 7. 与Dog.new(Dog)类似,所以 self = Dog in new()。
-- 8. 与mrDog.makeSound(mrDog)一样; self = mrDog。 ---------------------------------------------------- -- 继承的例子: LoudDog = Dog:new() -- 1. function LoudDog:makeSound()
s = self.sound .. ' ' -- 2.
print(s .. s .. s)
end seymour = LoudDog:new() -- 3.
seymour:makeSound() -- 'woof woof woof' -- 4. -- 1. LoudDog获得Dog的方法和变量列表。
-- 2. 通过new(),self有一个'sound'的key from new(),参见第3条。
-- 3. 与LoudDog.new(LoudDog)一样,并且被转换成
-- Dog.new(LoudDog),因为LoudDog没有'new' 的key,
-- 不过在它的元表可以看到 __index = Dog。
-- 结果: seymour的元表是LoudDog,并且
-- LoudDog.__index = LoudDog。所以有seymour.key
-- = seymour.key, LoudDog.key, Dog.key, 要看
-- 针对给定的key哪一个table排在前面。
-- 4. 在LoudDog可以找到'makeSound'的key;这与
-- LoudDog.makeSound(seymour)一样。 -- 如果需要,子类也可以有new(),与基类的类似:
function LoudDog:new()
newObj = {}
-- 初始化newObj
self.__index = self
return setmetatable(newObj, self)
end ----------------------------------------------------
-- 4. 模块
---------------------------------------------------- --[[ 我把这部分给注释了,这样脚本剩下的部分就可以运行了 -- 假设文件mod.lua的内容是:
local M = {} local function sayMyName()
print('Hrunkner')
end function M.sayHello()
print('Why hello there')
sayMyName()
end return M -- 另一个文件也可以使用mod.lua的函数:
local mod = require('mod') -- 运行文件mod.lua. -- require是包含模块的标准做法。
-- require等价于: (针对没有被缓存的情况;参加后面的内容)
local mod = (function ()
<contents of mod.lua>
end)()
-- mod.lua就好像一个函数体,所以mod.lua的局部变量对外是不可见的。 -- 下面的代码是工作的,因为在mod.lua中mod = M:
mod.sayHello() -- Says hello to Hrunkner. -- 这是错误的;sayMyName只在mod.lua中存在:
mod.sayMyName() -- 错误 -- require返回的值会被缓存,所以一个文件只会被运行一次,
-- 即使它被require了多次。 -- 假设mod2.lua包含代码"print('Hi!')"。
local a = require('mod2') -- 打印Hi!
local b = require('mod2') -- 不再打印; a=b. -- dofile与require类似,只是不做缓存:
dofile('mod2') --> Hi!
dofile('mod2') --> Hi! (再次运行,与require不同) -- loadfile加载一个lua文件,但是并不允许它。
f = loadfile('mod2') -- Calling f() runs mod2.lua. -- loadstring是loadfile的字符串版本。
g = loadstring('print(343)') --返回一个函数。
g() -- 打印343; 在此之前什么也不打印。 --]]

Lua基础用法,(转)

Lua 基础的更多相关文章

  1. Lua基础 函数(一)

    转自: http://blog.csdn.net/wzzfeitian/article/details/8653101 在Lua中,函数是对语句和表达式进行抽象的主要方法.既可以用来处理一些特殊的工作 ...

  2. Lua基础之MetaTable(6)

    Lua基础之MetaTable(6) 转载地址:http://nova-fusion.com/2011/06/30/lua-metatables-tutorial/ 关于MetaTable的补充:ht ...

  3. Step By Step(Lua基础知识)

    Step By Step(Lua基础知识) 一.基础知识:    1. 第一个程序和函数:    在目前这个学习阶段,运行Lua程序最好的方式就是通过Lua自带的解释器程序,如:    /> l ...

  4. lua基础(一)

    参考链接: http://blog.csdn.net/lyh916/article/details/49719697 一.注释 --这是行注释 --[[ 这是块注释 这是块注释 这是块注释 --]] ...

  5. lua 基础 2 类型和值

    -- 类型 和 值--[[ 8中类型 滚动类nil.boolean. number.string.userdata.function.thread 和 table.]] print (type(&qu ...

  6. lua 基础 1

    --1.1 Chunks--[[Chunk 是一系列语句,Lua 执行的每一块语句,比如一个文件或者交互模式下的每一行都是一个 Chunk.]] -- 1.2 全局变量--[[ 全局变量不需要声明,给 ...

  7. Lua学习----Lua基础数据类型

    前言 Lua有6中数据类型,分别是nil(空).boolean(布尔).number(数字).string(字符).table(表).function(函数) 在Lua中可以使用type函数来返回一个 ...

  8. Lua基础

    局部定义与代码块: 使用local声明一个局部变量或局部函数,局部对象只在被声明的那个代码块中有效. 代码块:一个控制结构.一个函数体.一个chunk(一个文件或文本串)(Lua把chunk当做函数处 ...

  9. Lua基础之字符串(string)

    1,计算字符串长度 2,返回字符串s的n个拷贝 3,返回字符串全部字母大写 4,返回字符串全部字母小写 5,返回一个类似printf的格式化字符串 6,根据下标截取字符串 7,在字符串中查找 8,在字 ...

随机推荐

  1. java内部类

    1.内部类 2.内部类的名字不会单独存在,根据外部类名的存在而存在.内部类的名字可以和外部其他类的名字一样. 3.这个this.num打印的是inner类里面的num 4.在内部类访问外部类成员变量方 ...

  2. 适配iOS10的哪些事 ---- 学习笔记八

    一. 上传了一个版本,为什么没有构建版本? 解:info.plist中的Bundle version 与上一个版本一致或少于上一个版本,上线新版本时,Bundle version和Bundle ... ...

  3. rpc框架之 thrift连接池实现

    接前一篇rpc框架之HA/负载均衡构架设计 继续,写了一个简单的thrift 连接池: 先做点准备工作: package yjmyzz; public class ServerInfo { publi ...

  4. 配置容器configuring Containsers

    容器可以在运行时配置,相反的也可以通过应用程序的配置文件(或扩展配置文件)来配置. Unity的三个高级功能:泛型装饰链.解析器重写和数组注入. 1.配置开放式泛型来解析封闭式泛型 只要不是为封闭型泛 ...

  5. LeetCode:Multiply Strings

    题目链接 Given two numbers represented as strings, return multiplication of the numbers as a string. Not ...

  6. WPF自适应可关闭的TabControl 类似浏览器的标签页

    效果如图: 虽然说是自适应可关闭的TabControl,但TabControl并不需要改动,不如叫自适应可关闭的TabItem. 大体思路:建一个用户控件,继承自TabItem,里面放个按钮,点击的时 ...

  7. Jquery easy ui datagrid動態加載列問題

    1.如下图效果是当选择不同的日期范围时datagrid则会加载出对应的列数

  8. table寻找兄弟列的值

    function showCover(videoidtemp,curRow){ // curRow为当前元素.寻找当前元素的父元素,寻找父元素中class为tdd的元素..html() 是单元格td中 ...

  9. C++中Reference与Pointer的不同

    Reference与Pointer中直接存储的都是变量的地址, 它们唯一的不同是前者的存储的地址值是只读的, 而后者可以修改. 也就是说Reference不支持以下操作: *a = b 其他语言, 如 ...

  10. spring-Formatter(格式化器)-validator(验证器)-错误信息定制

    项目结构