CH Round #53 -GCD Path
描述
给定一张N个点的有向图,点i到点j有一条长度为 i/(gcd(i,j))的边。有Q个询问,每个询问包含两个数x和y,求x到y的最短距离。
输入格式
第一行包含两个用空格隔开的整数,N和Q。
接下来Q行,每行两个数x和y。
输出格式
输出Q行整数,表示从x到y的最短距离。
样例输入
6 2
4 6
2 5
样例输出
2
2
数据范围与约定
- 对于30%的数据,1<=N<=100。
- 对于70%的数据,1<=N<=10^5。
- 对于100%的数据,1<=N<=10^7,1<=x,y<=N,Q<=10^5。
题解:
忽然发现,求1-n的质因数分解的和是可以线性筛的,怒赞!
为何不卡我们这些q*sqrt(n)的?出题人良心,好评!!!
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 10000000+1000
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,tot,p[maxn],f[maxn];
bool check[maxn];
inline int gcd(int x,int y){return y?gcd(y,x%y):x;}
void get()
{
f[]=;tot=;
for2(i,,n)
{
if(!check[i]){p[++tot]=i;f[i]=i;};
for1(j,tot)
{
int k=p[j]*i;
if(k>n)break;
check[k]=;
f[k]=f[i]+p[j];
if(i%p[j]==)break;
}
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();get();
while(m--)
{
int x=read(),y=read();
if(x==y){printf("0\n");continue;};
printf("%d\n",f[x/gcd(x,y)]);
}
return ;
}
补一下为什么质因数分解就是ans
假设求x->y的最短路,则直接走 这条路 长度为x/gcd(x,y)设这个长度的质因数分解为a1*a2*a3*a4……(两项可以相等)
然后要用到一个结论:
若a>=2,b>=2,则a+b<=a*b
移项就是 (1-a)*(1-b)>=1 这是显然的。
所以我们不妨把这个长度分开来走,
因为每拆一项都会使答案减小或不边,那我们不妨直接将该数全部分解为质数,一个一个质数来走。
举个例子
100-1,则100/gcd(100,1)的质因数分解为2*2*5*5
我们不妨使每次走的长度为2 2 5 5,而2+2+5+5=14<100 这样使长度之和达到最小。
所以我们可以这样走 100->50->25->5->1->1
有没有更短的路径呢?严格证法还待yy,不过貌似直觉上是显然的?
CH Round #53 -GCD Path的更多相关文章
- CH Round #53 -【Nescafé 32】杯NOIP模拟赛
A.GCD Path http://ch.ezoj.tk/contest/CH%20Round%20%2353%20-%E3%80%90Nescaf%C3%A9%2032%E3%80%91%E6%9D ...
- CH Round #53 -密室
描述 有N个密室,3种钥匙(红色,绿色,白色)和2种锁(红色,绿色),红色钥匙只能开红色的锁,绿色钥匙只能开绿色的锁,白色钥匙可以开红色的锁和绿 色的锁,一把钥匙使用一次之后会被扔掉.每个密室由一扇门 ...
- CH Round #52 还教室[线段树 方差]
还教室 CH Round #52 - Thinking Bear #1 (NOIP模拟赛) [引子]还记得 NOIP 2012 提高组 Day2 中的借教室吗?时光飞逝,光阴荏苒,两年过去了,曾经借教 ...
- Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)
这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...
- CH Round #72树洞[二分答案 DFS&&BFS]
树洞 CH Round #72 - NOIP夏季划水赛 描述 在一片栖息地上有N棵树,每棵树下住着一只兔子,有M条路径连接这些树.更特殊地是,只有一棵树有3条或更多的路径与它相连,其它的树只有1条或2 ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- contesthunter CH Round #64 - MFOI杯水题欢乐赛day1 solve
http://www.contesthunter.org/contest/CH Round %2364 - MFOI杯水题欢乐赛 day1/Solve Solve CH Round #64 - MFO ...
- CH Round #17 舞动的夜晚
舞动的夜晚 CH Round #17 描述 L公司和H公司举办了一次联谊晚会.晚会上,L公司的N位员工和H公司的M位员工打算进行一场交际舞.在这些领导中,一些L公司的员工和H公司的员工之间是互相认识的 ...
- CH Round #45 能量释放
能量释放 CH Round #45 - alan有一些陷阱 III 题目描述 alan得到一块由个能量晶体构成的矿石,对于矿石中的每一个能量晶体,如果用化学物质刺激某一个能量晶体,就能使它释放能量. ...
随机推荐
- B树——思路、及C语言代码的实现
0.序 本人现读本科大二,这学期学习数据结构,老师为我们的期末作业布置一道任选题,而我一直以来都有听说B树是一棵挺神奇的树,所以我选择了它,当然更重要的原因是因为B树的难度最高,我喜欢做有挑战性的工作 ...
- 【HDU2224】The shortest path(双调欧几里得dp)
算法导论上一道dp,挺有趣的.于是就研究了一阵. dp(i, j)代表从左边第一个点到第i个点与从从左边最后一个点(即为第一个点)到j点的最优距离和.于是找到了子状态. 决策过程 dp[i][j] = ...
- E - Redundant Paths - poj 3177(缩点求叶子节点)
题意:给一个图,想让每两个点之间都有两条路相连,不过特殊的是相同的两点之间多次相连被认为是一条边,现在求最少还需要添加几条边才能做到 分析:手欠没看清楚是相同的边只能相连一次,需要去重边,缩点后求出来 ...
- Myeclipse自动生成javabean的get和set方法
用Myeclipse开发java web程序,写javabean的时候,如果字段很多的话,写get和set方法是一件很无语和浪费时间的事情,所以Myeclipse提供了一个自动生成这些方法的功能. 首 ...
- cocos2d-x CCAction(转载)
接触开发2d后,越来越多的用到动作的内容,看到一篇关于动作比较完整的文章,最主要的是动作的类图,从类图可以更加的理解各个类之间的继承的关系,以及使用更容易的去应用 . 文章有一些方法已经被修改了,现在 ...
- fstab的格式
# /etc/fstab/dev/hda8 swap swap defaults 0 0/dev/hda9 / ext2 defaults 1 1/dev/hda6 /wine vfat defaul ...
- sql server里一些常用的查询
查看表的创建和更改时间: select * from sys.tables 查询数据库的创建时间: select * from sys.databases where name in ('数据 ...
- c# 交换两个变量
使用临时变量: 有人会问只使用两个变量交换,怎么办? 不实用临时变量: 第一种: a=a+b; b=a-b; a=a-b; 第二种: 异或:相同是0,不同是1 上面是整型的,那么字符串可以直接异或吗? ...
- iOS ui界面vtf 开发
addConstraints 添加约束的步奏 添加控件到view中 设置translateResizeLayoutintoautolayout = false 添加约束 注意 约束 : 出现 有父子关 ...
- 刚安装的ios app 会带有教你功能使用的特效说明 做法
这个功能使用说明是每次app更新或者第一次安装都需要显示的.你可以给每个需要显示的说明界面设置一个BOOL变量控制它是否显示.在applicationDidFinishLaunching的函数中判断a ...