bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629
搜索。
我们知道:
如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{i}}$,其中$p_{i}$为质数,那么N的约数和为$\prod\limits_{i=1}^{m}(p_{i}^{0}+p_{i}^{2}+...+p_{i}^{k_{i}})$
如$36=2^{2}*3^{2}$,那么$36$的约数和为$(2^{0}+2^{1}+2^{2})*(3^{0}+3^{1}+3^{2})=91$
我们搜索找到所有合法最小的$p_{i}$和它次数$k_{i}$,然后DFS进入下一次搜索中。
如果发现当前的约数和为一个质数+1,我们可以加到答案去。
觉得答案的个数很少。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define fill(a,l,r,v) fill(a+l,a+r+1,v)
#define re(i,a,b) for(i=(a);i<=(b);i++)
#define red(i,a,b) for(i=(a);i>=(b);i--)
#define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define p_b(a) push_back(a)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N=maxN;
int flag[maxN+];
int cnt,p[maxN+];
int S; int ge,out[maxN+]; inline int isprime(int v)
{
if(v<=N)return !flag[v];
int i;for(i=;i<=cnt && p[i]*p[i]<=v;i++)if(v%p[i]==)return ;
return ;
} inline void DFS(int last,int now,int tot)
{
if(tot==){out[++ge]=now;return;}
if(isprime(tot-) && tot->p[last])
out[++ge]=now*(tot-);
for(int i=last+;i<=cnt;i++)
for(int j=p[i],k=p[i]+;k<=tot;j=j*p[i],k+=j)
if(tot%k==)
DFS(i,now*j,tot/k);
} int main()
{
freopen("bzoj3629.in","r",stdin);
freopen("bzoj3629.out","w",stdout);
int i,j;
flag[]=;
re(i,,N)
{
if(!flag[i])p[++cnt]=i;
for(j=;j<=cnt && i*p[j]<=N;j++)
{
flag[i*p[j]]=;
if(i%p[j]==)break;
}
}
while(SF("%d\n",&S)!=EOF)
{
ge=;
DFS(,,S);
sort(out+,out+ge+);
ge=unique(out+,out+ge+)-out-;
PF("%d\n",ge);
re(i,,ge)PF("%d%c",out[i],i==ge?'\n':' ');
}
return ;
}
bzoj3629[JLOI2014]聪明的燕姿的更多相关文章
- bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...
- 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)
传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...
- bzoj3629 [JLOI2014]聪明的燕姿——DFS+约数和定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 扫除了一个知识盲点:约数和定理 约数和定理: 对于一个大于1正整数n可以分解质因数:n ...
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...
- P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...
- 【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...
- [JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...
- bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...
随机推荐
- canvas生成遮罩图片
首先我们知道css3中增加了不少好用.好玩的css3样式可以使用.今天我们要说到是遮罩. 它的使用方式也不复杂,和background使用方式差不多.使用mask-image就 ...
- JDBC远程从一个MySql数据库中的一张表里面读出数据(这个数据库需要用SSH隧道连接,大约8W条数据),然后分别插入到另一个数据库中的两张表里
package com.eeepay.lzj.db; import java.sql.Connection; import java.sql.Date; import java.sql.DriverM ...
- 2017年开年的第一次比较大的安全事件: MongoDB “赎金事件”,如何看待互联网安全问题
今天上午(2017年1月7日),我的微信群中同时出现了两个MongoDB被黑掉要赎金的情况,于是在调查过程中,发现了这个事件.这个事件应该是2017年开年的第一次比较大的安全事件吧,发现国内居然没有什 ...
- javascript单元测试-jsamine[转]
Jasmine的开发团队来自PivotalLabs,他们一开始开发的JavaScript测试框架是JsUnit,来源于著名的JAVA测试框架JUnit.JsUnit是xUnit的JavaScript实 ...
- 6.关于QT中的内存管理,动态的制作,动态库的调用,静态库的制作
一 QT的内存管理 1 QT中的内存管理是QObject来管理的 2 QT中的内存管理没有cocos2dx中的引用计数 3 组件能够指定父对象 QTimer *timer = QTime ...
- QML设计登陆界面
QML设计登陆界面 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 环境: 主机:WIN7 开发环境:Qt5.2 说明: 用QML设计一个应用的登陆界面 ...
- @IBDesignable和@IBInspectable
近期一直在看苹果公司提供的两本swift官方教程电子书,一部是<The Swift Programming Language>,还有一部是<Using Swift With Coco ...
- [Typescript] Function defination
Define a function type and params type: // The function init // Accept two params which are both typ ...
- linux/unix运行级别
在SYSTEM V 风格的UNIX系统中,系统被分为不同的运行级别,这和BSD分支的UNIX有所不同,常用的为0~6七个级别:0关机 1单用户 2不带网络的多用户 3带网络的多用户 4保留,用户可以自 ...
- 编译lua5.3.2报错提示libreadline.so存在未定义的引用解决方法
从官网上下载5.3.2的源码后,make linux进行编译,提示报错: gcc -std=gnu99 -o lua lua.o liblua.a -lm -Wl,-E -ldl -lreadline ...