[转载]MATLAB中FFT的使用方法
http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/
说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编
一.调用方法
X=FFT(x);
X=FFT(x,N);
x=IFFT(X);
x=IFFT(X,N)
用MATLAB进行谱分析时注意:
(1)函数FFT返回值的数据结构具有对称性。
例:
N=8;
n=0:N-1;
xn=[4 3 2 6 7 8 9 0];
Xk=fft(xn)
→
Xk =
39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i
Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。
(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。
二.FFT应用举例
例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。
clf;
fs=100;N=128; %采样频率和数据点数
n=0:N-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N); %对信号进行快速Fourier变换
mag=abs(y); %求得Fourier变换后的振幅
f=n*fs/N; %频率序列
subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
%对信号采样数据为1024点的处理
fs=100;N=1024;n=0:N-1;t=n/fs;
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N); %对信号进行快速Fourier变换
mag=abs(y); %求取Fourier变换的振幅
f=n*fs/N;
subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
subplot(2,2,4)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
运行结果:
fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。
例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:
(1)数据个数N=32,FFT所用的采样点数NFFT=32;
(2)N=32,NFFT=128;
(3)N=136,NFFT=128;
(4)N=136,NFFT=512。
clf;fs=100; %采样频率
Ndata=32; %数据长度
N=32; %FFT的数据长度
n=0:Ndata-1;t=n/fs; %数据对应的时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号
y=fft(x,N); %信号的Fourier变换
mag=abs(y); %求取振幅
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=32');grid on;
Ndata=32; %数据个数
N=128; %FFT采用的数据长度
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=128');grid on;
Ndata=136; %数据个数
N=128; %FFT采用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=128');grid on;
Ndata=136; %数据个数
N=512; %FFT所用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=512');grid on;

结论:
(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。
(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。
(3)FFT程序将数据截断,这时分辨率较高。
(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。
对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。
例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)
(1)数据点过少,几乎无法看出有关信号频谱的详细信息;
(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。
(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。
可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。
[转载]MATLAB中FFT的使用方法的更多相关文章
- MATLAB中FFT的使用方法
MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...
- [转载]Matlab中fft与fftshift命令的小结与分析
http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...
- MATLAB中fft函数的正确使用方法
问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...
- [转载]Matlab中插值函数汇总和使用说明
http://blog.sciencenet.cn/blog-457143-679275.html MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,' ...
- 转载-Java中LinkedList的一些方法—addFirst addFirst getFirst geLast removeFirst removeLast
Java中LinkedList的一些方法—addFirst addFirst getFirst geLast removeFirst removeLast 版权声明:本文为博主原创文章,遵循CC 4. ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- matlab 中fft的用法
一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N- ...
- [转载] Java中常用的加密方法
转载自http://www.iteye.com/topic/1122076/ 加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的 ...
- paper 3:matlab中save,load使用方法小结
功能描述]存储文件[软件界面]MATLAB->File->Save Workspace As将变量存入硬盘中指定路径.[函数用法] save:该函数将所有workspace中变量用二进制格 ...
随机推荐
- XML格式导出Excel
下面介绍一种导出Excel的方法: 此方法不需要在服务器上安装Excel,采用生成xml以excel方式输出到客户端,可能需要客户机安装excel,所以也不会有乱七八糟的权限设定,和莫名其妙的版本问题 ...
- MySQL主从同步、读写分离配置步骤
现在使用的两台服务器已经安装了MySQL,全是rpm包装的,能正常使用. 为了避免不必要的麻烦,主从服务器MySQL版本尽量保持一致; 环境:192.168.0.1 (Master) 192.168. ...
- mono for android工具下载
http://www.wuleba.com/25510.html Windows平台:http://xamarin.com/installer_assets/v3/Windows/Universal/ ...
- 常见maven镜像
国内连接maven官方的仓库更新依赖库,网速一般很慢,收集一些国内快速的maven仓库镜像以备用. ====================国内OSChina提供的镜像,非常不错=========== ...
- 利用反射动态构成sql语句
class Program { static void Main(string[] args) { People p = new Peo ...
- Mapper映射语句高阶应用——ResultMap
resultMap 元素是MyBatis 中最重要最强大的元素.它就是让你远离 90%的需要从结果 集中取出数据的 JDBC代码的那个东西, 而且在一些情形下允许你做一些 JDBC 不支持的事 情. ...
- dede调用时间大全标签,不同格式!
[field:pubdate function="MyDate('Y-m-d',@me)"/]2013-12-17[field:pubdate function=MyDate('m ...
- project euler 25 fibonacci
数学方法: Saying that a number contains 1000 digits is the same as saying that it's greater than 10**999 ...
- linux下安装pdf
官方下载地址:http://www.foxitsoftware.cn/downloads/ 问题:下载官方包以后解压,双击不能打开,也没有任何提示. 用teminal 来打开foxitreader,t ...
- 对于C++中const & T operator= 的一点思考
一个正常的assignment操作符的声明是这样的. const elmentType & elmentType::operator=(const elmentType &rhs) 这 ...