定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量机。

目录:

• 函数间隔

• 几何间隔

• 间隔最大化

• 对偶算法

1、函数间隔

考虑分类算法的两个方面:确信度 + 正确性

确信度:用点到分离超平面的距离表示,间接表示为$w ⋅x_i+b$,分类的结果有多大的自信保证它是正确的;

正确性:$y_i$  与 $w ⋅x_i+b$的符号是否一致,表征分类是否正确;

结合以上两点,

某一实例点的函数间隔的定义即:$γ ̂_i= y_i (w⋅x_i+b)$;

训练数据集的函数间隔定义为:$γ ̂*=min\quadγ ̂*_i$;

确信度:$w⋅x_i+b$可以间接的表示点到超平面的距离,距离越小,说明确信度越低,反之;

正确性:当 $y_i$  与 $w⋅x_i+b$ 的符号一致时,函数间隔为正,此时分类是正确的,反之,分类错误;

2、几何间隔

但是.........

当w,b成倍的变化,变成了ℷw,ℷb时,超平面没有发生变化,但是函数间隔却变化了 ℷ 倍,基于此,

某一实例点的几何间隔就被定义为:$γ_i=y_i\frac{(w⋅x_i+b)}{‖w‖}$;

训练数据集的几何间隔定义为:$γ=min⁡\quadγ_i$;

几何间隔不会随着w和b的比例变化而同比例的变化;

而且,$\frac{(w⋅x_i+b)}{‖w‖}$    也是点到超平面真正的距离(不再是间接的表示了),所以几何间隔其实是带符号的距离;

几何间隔和函数间隔之间的关系:$γ=\frac{γ^*}{‖w‖}$

3、间隔最大化

线性可分支持向量机的目的是:正确的分离超平面 + 最大的几何间隔

最大的几何间隔直观的解释:以最大的确信度分离数据集,即使是最难分的实例点也可以被分的很好(大的确信度);

最大化几何间隔:

$max\quadγ$  ;

$s.t.\quad\frac{(y_i (w⋅x_i+b))}{‖w‖} ≥γ ,\qquad i=1,2……N$ ;

带入函数间隔:

$max\quad\frac{γ^*}{‖w‖}$ ;

$s.t.\quad y_i (w⋅x_i+b)≥γ^*, \qquad  i=1,2……N$;

考虑上优化问题,可知$γ^*$ 的取值不会影响优化问题(当w和b成比例变化时,$γ^*$也会成比例变化,优化问题不变),可取$γ^*$ 为1,又可知最大化 $\frac1{‖w‖}$   等价与最小化 $\frac1{2} ‖w‖^2$,故优化问题就可以写成一个凸二次规划问题:

$min\quad\frac⁡{1}{2} ‖w‖^2$ ;

$s.t. \quad y_i (w⋅x_i+b)≥1 ,\qquad i=1,2…N$;

算法:线性可分支持向量机学习算法 -- 最大间隔算法

输入:训练数据集 $T{(x_1,y_1 ),(x_2,y_2 ),…,(x_n,y_n )}  ,  x∈R^n  ,  y∈ \left \{ +1,-1 \right \} $;

输出:分离超平面和分类决策函数;

(1)构造并求解凸二次规划问题:

$min⁡\quad\frac1{2} ‖w‖^2$ ;

$s.t.\quad y_i (w⋅x_i+b)≥1 , \qquad i=1,2…N$;

得到问题的解:$w^∗, b^∗ $  ;

(2)得到分离超平面:$w^∗⋅x+b^∗=0$ ;

分类决策函数:$f(x)=sign(w^∗⋅x+b^∗ )$;

支持向量:距离超平面最近的实例点,(那些最难分类的实例点)

间隔边界:

$H_1  : w⋅x+b=1$;

$H_2  : w⋅x+b=−1$;

4、对偶算法

根据拉格朗日对偶性,求对偶问题即可求原始问题。对偶问题一般更容易求解。

构建拉格朗日函数:$L(w,b,α)=\frac1{2} ‖w‖^2−∑α_i y_i (w⋅x_i+b)+∑α_i $;

根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题:max⁡  min⁡  L(w,b,α)

(1)求解极小问题 ⁡min⁡ L(w,b,α)   分别对w和b求导:

$\frac{\partial L(w,b,\alpha)}{\partial w}=w-\sum_{i=1}^N\alpha_iy_ix_i=0$           ;            $\frac{\partial L(w,b,\alpha)}{\partial b}=-\sum_{i=1}^N\alpha_iy_i=0$

得到:

$w=\sum_{i=1}^N\alpha_iy_ix_i$;

$\sum_{i=1}^N\alpha_iy_i=0$;

带入到极小问题中:

$min\quad L(w,b,α)=-\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j(x_i\cdot{x_j})+\sum_{i=1}^N\alpha_i$

(2)求解极大问题:max⁡ min⁡ L(w,b,α)

$max\quad-\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j(x_i\cdot{x_j})+\sum_{i=1}^N\alpha_i$

$s.t.\quad\sum_{i=1}^N\alpha_iy_i=0 , \alpha_i\geqslant 0,i=1,2,...,N$

等价于:

$min\quad\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j(x_i\cdot{x_j})-\sum_{i=1}^N\alpha_i$

$s.t.\quad\sum_{i=1}^N\alpha_iy_i=0 , \alpha_i\geqslant 0,i=1,2,...,N$

我们的原始问题是:

$min\quad \frac1{2} ‖w‖^2$    ;

$s.t. \quad y_i (w⋅x_i+b)≥1$;

原始问题满足定理C.3(统计机器学习附录)的条件,故可以通过求解对偶问题来求解原始问题;

定理:设$α^∗$ 是对偶问题的解,则存在$α_j>0$,按下式求原始问题的解:

$w^∗=∑α_i^∗ y_i x_i$;

$b^∗=y_j−∑α_i^∗ y_i (x_i⋅x_j )$;

证明:

根据KKT的互补条件:$α_i c_i (x)=0,若α_j>0,则c_j (x)=0;y_j (w⋅x_j+b)−1=0≫  y_j^2 (w⋅x_j+b)−y_j=0≫b=y_j−w⋅x_j$

至此,就得到了分离超平面和分类决策函数。

算法:线性可分支持向量机 -- 对偶学习算法

输入:训练数据集 $T{(x_1,y_1 ),(x_2,y_2 ),…,(x_n,y_n )}  ,  x∈R^n  ,  y ∈ \left \{ +1,-1 \right \} $ ;

输出:分离超平面和分类决策函数;

(1)构造并求解原始问题的对偶问题:

$min\quad\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j(x_i\cdot{x_j})-\sum_{i=1}^N\alpha_i$

$s.t.\quad\sum_{i=1}^N\alpha_iy_i=0 , \alpha_i\geqslant 0,i=1,2,...,N$

得到解为$α^∗$;

(2)根据对偶问题的解求原始问题的解:

$w^∗=∑α_i^∗ y_i x_i$;

$b^∗=y_j−∑α_i^∗ y_i (x_i⋅x_j )$;

(3)得到分离超平面和分类决策函数;

支持向量:$α_i^∗>0$的实例点,

根据KKT互补条件,对于$α_i^∗>0$的实例点,$y_j (w⋅x_j+b)−1=0 ≫ w⋅x_j+b=±1$  ,即实例点在间隔边界上,这个定义和之前的定义是一致的;

至此,线性可分支持向量机完结。

但是...........

线性可分支持向量机(硬间隔最大化)针对的是线性可分训练数据集,然而,现实世界里有很多数据集是线性不可分的(样本数据中有噪声或特异点),这种情况下改怎么办?

svm 之 线性可分支持向量机的更多相关文章

  1. 线性可分支持向量机与软间隔最大化--SVM(2)

    线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最 ...

  2. 线性可分支持向量机--SVM(1)

    线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: ...

  3. 统计学习:线性可分支持向量机(SVM)

    模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{ ...

  4. 统计学习2:线性可分支持向量机(Scipy实现)

    1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned ...

  5. SVM-线性可分支持向量机

    SVM-线性可分支持向量机 如果您想体验更好的阅读:请戳这里littlefish.top 函数间隔和几何间隔 给定线性可分训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面 ...

  6. OpenCV支持向量机SVM对线性不可分数据的处理

    支持向量机对线性不可分数据的处理 目标 本文档尝试解答如下问题: 在训练数据线性不可分时,如何定义此情形下支持向量机的最优化问题. 如何设置 CvSVMParams 中的参数来解决此类问题. 动机 为 ...

  7. SVM清晰讲解——线性可分问题

    转载作者:liangdas 引言: 1995年Cortes和Vapnik于首先提出了支持向量机(Support Vector Machine),由于其能够适应小样本的分类,分类速度快等特点,性能不差于 ...

  8. SVM明确的解释1__ 线性可分问题

    笔者:liangdas 出处:简单点儿,通俗点儿,机器学习    http://blog.csdn.net/liangdas/article/details/44251469 引言: 1995年Cor ...

  9. 线性可分SVM中线性规划问题的化简

    在网上找了许多关于线性可分SVM化简的过程,但似乎都不是很详细,所以凭借自己的理解去详解了一下. 线性可分SVM的目标是求得一个超平面(其实就是求w和b),在其在对目标样本的划分正确的基础上,使得到该 ...

随机推荐

  1. 初识 ❤ TensorFlow |【一见倾心】

    说明

  2. 关于JAVA的环境变量和那些jar包

    大家配置环境变量一般都是 JAVA_HOME:C:\Program Files (x86)\Java\jdk1.6.0_30; PATH:%JAVA_HOME%\bin; CLASSPATH:.;%J ...

  3. fpm rpm制作

    使用fpm命令制作rpm包并安装 工作中有如下情况需要将文件打包rpm: 避免重复工作,将源码程序打包为rpm 使用yum发布项目,项目打包为rpm 将自己写好的程序打包为rpm,提供给用户下载 其他 ...

  4. APP测试功能点

    1.使用APP时手机耗电情况 2.APP占用手机内存 3.APP在不同网络下的使用情况(WiFi/4G/3G/2G) 4.APP安装包大小 5.APP流量消耗 6.APP支持系统版本(android, ...

  5. FVWM使用指南

    www.ctex.org/documents/shredder/fvwm_frame.html

  6. 路由参数 query和params

    1. path:'www.baidu.com' query  { id:122 } 对应地址:http:'www.baidu.coom?id=122'   类似get方式 2.name:'baidu' ...

  7. 使用腾讯地图请求来源未被授权, 此次请求来源域名/ip:servicewechat.com

    原文:微信小程序使用腾讯地图请求来源未被授权, 此次请求来源域名:servicewechat.com 版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明 ...

  8. ingress-nginx配置https文件访问

    1.先将证书文件上传至服务器特定目录.比如:/root/ssl 假设证书名称为:server.crt和server.key 2.现在主节点后台创建私密文件. kubectl create secret ...

  9. html/js部分问题和小结

    2015/9/8 1.js中不要试图去处理由[变量:变量]组成的map(不过可以通过DWR.addOptions添加),而是处理[bh:变量][xm:变量],然后通过data[i].bh,data[i ...

  10. [Java 教程 02] 开发环境搭建

    在上一篇文章对Java做了一个简单介绍之后,我想大家都已经对她有一个初步的认识了吧!那踏入正式学习使用Java之前,我们有一步是不得不做的,它是什么呢?没有错,就是我们本篇文章的标题所说,搭建Java ...