【Deep Learning Nanodegree Foundation笔记】第 9 课:Model Evaluation and Validation
In this lesson, you'll learn some of the basics of training models.
You'll learn the power of testing and cross validation,
and some interesting metrics to evaluate models, such as accuracy or R2 score.
- How to create a test set for your models.
- How to use confusion matrices to evaluate false positives, and false negatives.
- How to measure accuracy and other model metrics.
- How to evaluate regression.
- How to detect whether you are overfitting or underfitting based on the complexity of your model.
- How to use cross validation to ensure your model is generalizable.
【Deep Learning Nanodegree Foundation笔记】第 9 课:Model Evaluation and Validation的更多相关文章
- 【Deep Learning Nanodegree Foundation笔记】第 1 课:INTRODUCTION Welcome
Welcome to the Deep Learning Nanodegree Foundations Program! In this lesson, you'll meet your instru ...
- 【Deep Learning Nanodegree Foundation笔记】第 10 课:Sentiment Analysis with Andrew Trask
In this lesson, Andrew Trask, the author of Grokking Deep Learning, will walk you through using neur ...
- 【Deep Learning Nanodegree Foundation笔记】第 7 课:NEURAL NETWORKS Intro to Neural Networks
In this lesson, you'll dive deeper into the intuition behind Logistic Regression and Neural Networks ...
- 【Deep Learning Nanodegree Foundation笔记】第 0 课:课程计划
第一周 机器学习的类型,以及何时使用机器学习 我们将首先简单介绍线性回归和机器学习.这将让你熟悉这些领域的常用术语,你需要了解的技术进展,并了解深度学习在更大的机器学习背景中的位置. 直播:线性回归 ...
- 【Deep Learning Nanodegree Foundation笔记】第 5 课:Logistic Regression
Learn about linear regression and logistic regression models. These simple machine learning models a ...
- Geometric deep learning on graphs and manifolds using mixture model CNNs
Monti, Federico, et al. "Geometric deep learning on graphs and manifolds using mixture model CN ...
- Deep Learning.ai学习笔记_第一门课_神经网络和深度学习
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...
- 《Neural Networks and Deep Learning》课程笔记
Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...
- Deep Learning.ai学习笔记_第五门课_序列模型
目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出 ...
随机推荐
- 用CSS创建分页的实例
总结介绍如何通过使用 CSS 来创建分页的实例. ㈠简单分页 如果你的网站有很多个页面,你就需要使用分页来为每个页面做导航. 以下实例演示了如何使用 HTML 和 CSS 来创建分页: <!DO ...
- HDU 6667 Roundgod and Milk Tea
hdu题面 Time limit 6000 ms Memory limit 131072 kB OS Windows Source 2019 Multi-University Training Con ...
- kotlin实现流读取
在Java对流的读取是下面的那样,当前不要忘记流的关闭close. // java 代码void someFunc(InputStream in, OutputStream out) throws I ...
- Shell中的条件测试和循环语句
1.条件测试:test或[ 如果测试结果为真,则该命令的Exit Status为0,如果测试结果为假,则命令的Exit Status为0 运行结果: 带与.或.非的测试命令[ ! EXPR ] : E ...
- 排序算法总结(java实现)
排序算法 介绍:排序分为内部排序和外部排序,内部排序指在内存中进行的排序过程:外部排序指在外存中进行排序的过程,但是此过程建立在多次访问内存的基础上(分成一段段利用内部排序进行排序). 以下排序均属于 ...
- Is JavaScript a pass-by-reference or pass-by-value language?
Is JavaScript a pass-by-reference or pass-by-value language? A very detailed explanation about copyi ...
- __doPostBack function
__doPostBack function Hi everyone. Today I am going to talk about the __doPostBack function, because ...
- spark MLlib 概念 2:Stratified sampling 层次抽样
定义: In statistical surveys, when subpopulations within an overall population vary, it is advantageou ...
- 微信、QQ第三方登录授权时的问题总结
一.微信第一个问题:redirect_uri域名与后台配置不一致,错误码:10003 解决方案: 1,首先确定访问的第三方接口地址参数前后顺序是否正确,redirect_uri回调地址是否加了http ...
- JVM系列3:JVM垃圾回收
1.JVM内存分配和回收 1.1 对象分配原则 在JVM系列1:内存区域中我们谈到,JVM堆中的内存划分如下: 从中可以看出堆内存分为新生代和老年代以及永久代(在JDK1.8中已经被MetaSpace ...