Description

【故事背景】
宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等。不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情。这些游戏往往
都有很多的支线剧情,现在JYY想花费最少的时间看完所有的支线剧情。
【问题描述】
JYY现在所玩的RPG游戏中,一共有N个剧情点,由1到N编号,第i个剧情点可以根据JYY的不同的选择,而经过不同的支线剧情,前往Ki种不同的新的剧情点。当然如果为0,则说明i号剧情点是游戏的一个结局了。
JYY观看一个支线剧情需要一定的时间。JYY一开始处在1号剧情点,也就是游戏的开始。显然任何一个剧情点都是从1号剧情点可达的。此外,随着游戏的进行,剧情是不可逆的。所以游戏保证从任意剧情点出发,都不能再回到这个剧情点。由于JYY过度使用修改器,导致游戏的“存档”和“读档”功能损坏了,
所以JYY要想回到之前的剧情点,唯一的方法就是退出当前游戏,并开始新的游戏,也就是回到1号剧情点。JYY可以在任何时刻退出游戏并重新开始。不断开始新的游戏重复观看已经看过的剧情是很痛苦,JYY希望花费最少的时间,看完所有不同的支线剧情。

Input

输入一行包含一个正整数N。
接下来N行,第i行为i号剧情点的信息;
第一个整数为,接下来个整数对,Bij和Tij,表示从剧情点i可以前往剧
情点,并且观看这段支线剧情需要花费的时间。
 

Output

输出一行包含一个整数,表示JYY看完所有支线剧情所需要的最少时间。

 
 
 

Sample Input

6
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0

Sample Output

24

HINT

JYY需要重新开始3次游戏,加上一开始的一次游戏,4次游戏的进程是

1->2->4,1->2->5,1->3->5和1->3->6。
 
对于100%的数据满足N<=300,0<=Ki<=50,1<=Tij<=300,Sigma(Ki)<=5000

Source

By 佚名上传

Solution

有上下界费用流。

构图和上下界的网络流类似,不过从新建源到当前节点的费用要设成本来流进来的费用。

Code

 #include <cstdio>
#include <algorithm>
#include <cstring> #define R register
#define maxn 310
#define maxm 23333
#define inf 0x7fffffff
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
struct Edge {
Edge *next, *rev;
int from, to, cap, cost;
} *prev[maxn], *last[maxn], e[maxm], *ecnt = e;
inline void link(R int a, R int b, R int w, R int c)
{
// printf("%d %d %d %d\n", a, b, w, c);
*++ecnt = (Edge) {last[a], ecnt + , a, b, w, c}; last[a] = ecnt;
*++ecnt = (Edge) {last[b], ecnt - , b, a, , -c}; last[b] = ecnt;
}
int s, t, dis[maxn], q[maxn << ], ans, deg[maxn], cs[maxn];
bool inq[maxn];
inline bool spfa()
{
for (R int i = ; i <= t; ++i) dis[i] = inf;
R int head = , tail = ; dis[q[] = s] = ;
while (head < tail)
{
R int now = q[++head]; inq[now] = ;
for (R Edge *iter = last[now]; iter; iter = iter -> next)
if (iter -> cap && dis[iter -> to] > dis[now] + iter -> cost)
{
dis[iter -> to] = dis[now] + iter -> cost;
prev[iter -> to] = iter;
!inq[iter -> to] ? inq[q[++tail] = iter -> to] = : ;
}
}
return dis[t] != inf;
}
inline void mcmf()
{
R int x = inf;
for (R Edge *iter = prev[t]; iter; iter = prev[iter -> from]) cmin(x, iter -> cap);
for (R Edge *iter = prev[t]; iter; iter = prev[iter -> from])
{
iter -> cap -= x;
iter -> rev -> cap += x;
ans += x * iter -> cost;
}
}
int main()
{
R int n; scanf("%d", &n);
s = n + ; t = n + ;
for (R int i = ; i <= n; ++i)
{
R int ni; scanf("%d", &ni);
for (R int j = ; j <= ni; ++j)
{
R int b, c; scanf("%d%d", &b, &c);
link(i, b, inf, c);
link(s, b, , c);
}
if (ni) link(i, t, ni, );
if (i != ) link(i, , inf, );
}
while (spfa()) mcmf();
printf("%d\n", ans);
return ;
}

【BZOJ3876】 [Ahoi2014]支线剧情的更多相关文章

  1. bzoj3876: [Ahoi2014]支线剧情

    神犇题解:http://blog.csdn.net/popoqqq/article/details/43024221 题意:给定一个DAG,1为起始点,任意一个点可以直接回到1,每条边有经过代价,求一 ...

  2. [bzoj3876][AHOI2014]支线剧情——上下界费用流

    题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...

  3. 【BZOJ3876】[Ahoi2014]支线剧情 有上下界费用流

    [BZOJ3876][Ahoi2014]支线剧情 Description [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩 ...

  4. 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 821  Solved: 502[Submit][Status ...

  5. C++之路进阶——bzoj3876(支线剧情)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  6. bzoj 3876 [Ahoi2014]支线剧情(有上下界的最小费用流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 484  Solved: 296[Submit][Status ...

  7. BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]

    3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...

  8. BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流

    3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...

  9. [Ahoi2014]支线剧情[无源汇有下界最小费用可行流]

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1538  Solved: 940[Submit][Statu ...

随机推荐

  1. Office_Word使用技巧大全(超全)

    目录 不收藏不行的 word 使用技巧大全 三招去掉页眉那条横线 批量转换全角字符为半角字符 快速打开最后编辑的文档 格式刷的使用 删除网上 下载 资料的换行符(象这种 "↓" ) ...

  2. spring boot-7.日志系统

    日志系统分为两部分,一部分是日志抽象层,一部分是日志实现层.常见的日志抽象层JCL,SLF4J,JBoss-Logging,日志实现层有logback,log4j,log4j2,JUL.日志抽象层的功 ...

  3. Atomic实现原子性源码分析:CAS(比较并交换)、Unsafe类

    1.CAS: 比较并交换(Compare And Swap),是Unsafe类中的一条CPU系统原语,原语的执行必须是连续的,在执行过程中不允许被中断,即CAS是一条CPU的原子指令,不会造成数据不一 ...

  4. Spring中pom文件所需节点

    <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> &l ...

  5. Java作业 题目:16版.情人节送玫瑰花

    题目:16版.情人节送玫瑰花 题干: 1.实验要求 本实验要求:以情人节送花为业务背景,体验自定义异常以及异常处理机制. 1-1. 业务说明: 1-1.1. 本实验以情人节送花为业务背景,女方提出送花 ...

  6. 缓存---LRU算法实现

    2.LRU   以下是基于双向链表+HashMap的LRU算法实现,对算法的解释如下:   设置一个map存放对应的键和值,同时设置一个双向链表,来保存最近最久未使用的关系,如果访问一个键,键存在于m ...

  7. 在.NET Core 3.0中发布单个Exe文件(PublishSingleFile)

    原文:在.NET Core 3.0中发布单个Exe文件(PublishSingleFile) 假设我有一个简单的" Hello World"控制台应用程序,我想发送给朋友来运行.朋 ...

  8. Linux常用命令及Shell的简单介绍

    一.linux命令   1.查看指令的参数搭配: man 指令名称   2.基础指令 ls  列出当前目录下的所有文档的名称(文档指的是文件和文件夹) 常用参数搭配: ls -l 列出文档详细信息 l ...

  9. Coco56公众号关键字索引

    目录 1. 本文地址 2. 公众号介绍 3. 关键词及含义 1. 本文地址 博客园:https://www.cnblogs.com/coco56/p/11182421.html 简书:https:// ...

  10. 数据库备份及SQL脚本导入

    数据库备份及SQL脚本导入 数据导出 su - oracle exp 数据库用户名/数据库密码@ORCL file=20190905.dmp full=y SQL脚本导入 首先导入前查看Oracle用 ...