1、UpdateStateByKey、windows等有状态的操作时,自动进行checkpoint,必须设置checkpoint目录,数据保留一份在容错的文件系统中,一旦内存中的数据丢失,可以从文件系统中读取数据,不需要重新计算。

SparkStreaming.checkpoint("hdfs://ip:port/checkpoint")

2、Driver高可用性

一、Java版

第一次在创建和启动StreamingContext的时候,那么将持续不断的产生实时计算的元数据并写入检查点,如果driver节点挂掉,那么可以让Spark集群自动重启集群(必须使用yarn cluster模式,spark-submit --deploy-mode cluster --supervise ....),然后继续运行计算程序,没有数据丢失。

private static void testDriverHA() {

  final Streaming checkpointDir="hdfs://ip:port/checkpoint";

  JavaStreamingContextFactory contextFactory = new JavaStreamingContextFactory() {

  @Override
  public JavaStreamingContext create() {
    SparkConf conf = new SparkConf()
      .setMaster("local[2]")
      .setAppName("AdClickRealTimeStatSpark");

    JavaStreamingContext jssc = new JavaStreamingContext(
          conf, Durations.seconds(5));
    jssc.checkpoint(checkpointDir);

    Map<String, String> kafkaParams = new HashMap<String, String>();
    kafkaParams.put(Constants.KAFKA_METADATA_BROKER_LIST,
      ConfigurationManager.getProperty(Constants.KAFKA_METADATA_BROKER_LIST));
    String kafkaTopics = ConfigurationManager.getProperty(Constants.KAFKA_TOPICS);
    String[] kafkaTopicsSplited = kafkaTopics.split(",");
    Set<String> topics = new HashSet<String>();
    for(String kafkaTopic : kafkaTopicsSplited) {
      topics.add(kafkaTopic);
    }

    JavaPairInputDStream<String, String> adRealTimeLogDStream = KafkaUtils.createDirectStream(
      jssc,
      String.class,
      String.class,
      StringDecoder.class,
      StringDecoder.class,
      kafkaParams,
      topics);

    JavaPairDStream<String, String> filteredAdRealTimeLogDStream =
      filterByBlacklist(adRealTimeLogDStream);
    generateDynamicBlacklist(filteredAdRealTimeLogDStream);
    JavaPairDStream<String, Long> adRealTimeStatDStream = calculateRealTimeStat(
      filteredAdRealTimeLogDStream);
    calculateProvinceTop3Ad(adRealTimeStatDStream);
    calculateAdClickCountByWindow(adRealTimeLogDStream);
    return jssc;
    }
  };

  JavaStreamingContext context = JavaStreamingContext.getOrCreate(
  checkpointDir, contextFactory);
  context.start();
  context.awaitTermination();

}

二、Scala版

package cn.piesat.spark

import org.apache.kafka.clients.consumer.{ConsumerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext} object SparkStreamingKafka {
private val brokers = "hadoop01:9092"
private val topics = "lj01"
private val checkPointPath = "hdfs://hadoop01:9000/sparkStreaming/kafka6" def main(args: Array[String]): Unit = {
val spark = getSparkSession()
val streamingContext = StreamingContext.getOrCreate(checkPointPath, () => {
val ssc = new StreamingContext(spark.sparkContext, Seconds(5))
ssc.checkpoint(checkPointPath)
val kafkaInputStream = getKafkaInputStream(ssc)
val result = kafkaInputStream.map(x => x.value()).flatMap(x => {
x.split(" ").map(x => {
(x, 1)
})
}).reduceByKey(_ + _)
result.print()
ssc
})
streamingContext.start()
streamingContext.awaitTermination()
} def getSparkSession(): SparkSession = {
SparkSession.builder()
.appName("kafka_test")
.master("local[4]")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate()
} def getKafkaInputStream(ssc: StreamingContext): InputDStream[ConsumerRecord[String, String]] = {
val topicArray = topics.split(",").toList
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> brokers,
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "lj00",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicArray, kafkaParams)
)
} }
注意:对streaming的操作逻辑必须写在StreamingContext.getOrCreate()方法里,因为若是第二次恢复时则执行方法里的逻辑!!!

3、实现RDD高可用性,启动WAL预写日志机制

sparkStreaming从原理上说,是通过receiver来进行数据接收的,接收到时的数据,会被划分成一个个的block,block会被组合成batch,针对一个batch,会创建一个Rdd,启动一个job来执行定义的算子操作。receiver主要接收到数据,那么就会立即将数据写入一份到时容错文件系统(比如hdfs)上的checkpoint目录中的,一份磁盘文件中去,作为数据的冗余副本。

  SparkConf conf = new SparkConf()
    .setMaster("local[2]")
    .setAppName("AdClickRealTimeStatSpark")
    .set("spark.streaming.receiver.writeAheadLog.enable","true");

SparkStreaming HA高可用性的更多相关文章

  1. oracle HA 高可用性具体解释(之中的一个)

    oracle HA 高可用性具体解释(之二,深入解析TAF,以及HA框架) :http://blog.csdn.net/panfelix/article/details/38436197 一.HA F ...

  2. oracle HA 高可用性具体解释(之二,深入解析TAF,以及HA框架)

    oracle HA 高可用性具体解释(之中的一个,client.server端服务具体解释):http://write.blog.csdn.net/postedit 我们已经看到TAF是的Oracle ...

  3. Citrix NetScaler HA(高可用性)解析

    Citrix NetScaler HA(高可用性)解析 来源 https://www.iyunv.com/thread-172259-1-1.html 1.1     NetScaler高可用概述 我 ...

  4. Hadoop HA高可用性架构和演进分析(转)

    1.概况 截至目前,Apache Hadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0.前者主要有如下几种实现方式:1)社区版本基于S ...

  5. 转 RAC HA 高可用性

    http://www.cnblogs.com/mfrbuaa/p/4089846.html

  6. RabbitMQ分布式集群架构和高可用性(HA)

    (一) 功能和原理 设计集群的目的 允许消费者和生产者在RabbitMQ节点崩溃的情况下继续运行 通过增加更多的节点来扩展消息通信的吞吐量 1 集群配置方式 RabbitMQ可以通过三种方法来部署分布 ...

  7. Hadoop HA高可用集群搭建(Hadoop+Zookeeper+HBase)

    声明:作者原创,转载注明出处. 作者:帅气陈吃苹果 一.服务器环境 主机名 IP 用户名 密码 安装目录 master188 192.168.29.188 hadoop hadoop /home/ha ...

  8. Hadoop 3.1.2(HA)+Zookeeper3.4.13+Hbase1.4.9(HA)+Hive2.3.4+Spark2.4.0(HA)高可用集群搭建

    目录 目录 1.前言 1.1.什么是 Hadoop? 1.1.1.什么是 YARN? 1.2.什么是 Zookeeper? 1.3.什么是 Hbase? 1.4.什么是 Hive 1.5.什么是 Sp ...

  9. VMware-vSphere-5.1--------群集、HA、DRS、FT

    VMware vSphere 5.1 高可用性       在本节中主要讲的是集群的一些功能和配置,相比5.0的设置,没有太大的变化.VMware vSphere为虚拟机提供虚拟化的基础架构,将现有的 ...

随机推荐

  1. java文件操作解析

    转载:http://blog.csdn.net/cynhafa/article/details/6882061 字节流与和字符流的使用非常相似,两者除了操作代码上的不同之外,是否还有其他的不同呢? 实 ...

  2. aliyun挂载oss

    配置 oss 挂载 阿里云 ecs 按照ossfs工具:yum install http://gosspublic.alicdn.com/ossfs/ossfs_1.80.5_centos6.5_x8 ...

  3. VBNET 文件信息和目录管理(判断,创建,删除,移动,复制)

    1.判断文件/目录是否存在 Try ' 先判断文件是否存在. If Not File.Exists(TextBox4.Text) Then File.CreateText(TextBox4.Text) ...

  4. ZooKeeper原理及介绍

    Zookeeper简介 1.1 什么是Zookeeper ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是大数据生态中的重要组件.它是 ...

  5. IDEA 修改JavaWeb的访问路径

    问题描述        对于我这个刚刚使用IDEA不久的新手来说,能够正常运行就不错了,不过到了后面,可能会觉得IDEA给你分配的默认访问路径很不顺手,比如访问的时候需要通过: http://loca ...

  6. css复杂动画(animation属性)

    1.声明:@keyframes name{   }: 2.涉及到的属性 animation-name:动画名称 animation-duration:单次动画总时长 animation-timing- ...

  7. 关于rpm包的安装卸载等

    在Linux操作系统中,有一个系统软件包,它的功能类似于Windows里面的“添加/删除程序”,但是功能又比“添加/删除程序”强很多,它就是Red Hat Package Manager(简称RPM) ...

  8. Reference to ‘xxxxx’ is ambiguous 错误

    1.原因,在当前类重复引入了 类库,比如 pch里面导入了#import "XXX" 此类的.h 又引入 #import <xxx/xxx> 导致 解决方法:删除此类的 ...

  9. symfony3 yml配置文件详解

    AppBundle\Entity\BlogComment: //映射实体    type: entity   //类型    repositoryClass: AppBundle\Repository ...

  10. deepin下挂载的的Windows系统(NTFC)目录怎么是只读的???

    关键命令: df-h sudo ntfsfix /dev/sda4 重启 参考博客:深度官网问题之大神回复