BZOJ-3495 前缀优化建图2-SAT
题意:有n个城镇被分成了k个郡,有m条连接城镇的无向边。要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都。
解法:以前没学过,参考https://blog.csdn.net/linkfqy/article/details/76242377的解法,涨姿势了。首先普通的建图,对于一个国家只能有一个首都,朴素的想法是如果选一个点为首都那么这个国家其他点都不能选,这样建图是n^2的显然会爆空间加超时。这里用到一种加前缀优化建图的技巧,主要是我们观察朴素建图有很多重复的浪费边,像在这个首都里选i点那么会从i连向(1,2...i-1,i+1,...n)的不选边,如果选i+1点就会向(1,2...i,i+2...n)连不选边,其实这两堆边除了i和i+1有些许不同,连向其他的边都是一样的,十分浪费。于是我们像用前缀来表示从而优化建图。
用u表示选i点,u'表示不选i点,U表示选u点前缀的某一个,U'表示不选u的前缀。那么仔细思考连边:

然后做2-SAT就行了。
细节详见代码:
#include<bits/stdc++.h>
using namespace std;
const int N=4e6+;
int n,m,k,dfs_clock=,scc_cnt=;
int pre[N],dfn[N],low[N],c[N]; int cnt=,head[N<<],nxt[N<<],to[N<<];
void add_edge(int x,int y) {
nxt[++cnt]=head[x]; to[cnt]=y; head[x]=cnt;
} int top=,S[N],ins[N];
void tarjan(int x) {
low[x]=dfn[x]=++dfs_clock;
ins[x]=; S[++top]=x;
for (int i=head[x];i;i=nxt[i]) {
int y=to[i];
if (!dfn[y]) {
tarjan(y);
low[x]=min(low[x],low[y]);
} else if (ins[y]) low[x]=min(low[x],dfn[y]);
}
if (dfn[x]==low[x]) {
int y; ++scc_cnt;
do {
y=S[top--]; ins[y]=;
c[y]=scc_cnt;
} while (x!=y);
}
} int main()
{
cin>>n>>m>>k;
//u->4x:点x首都,u'->4x+1:点x不首都,U->4x+2:前缀x首都,U'->4x+3:前缀x不首都
for (int i=;i<=m;i++) {
int x,y; scanf("%d%d",&x,&y);
add_edge(*y+,*x); add_edge(*x+,*y); //一条边两个点必有一个首都
}
for (int i=;i<=k;i++) {
int t,x,lst=; scanf("%d",&t);
for (int j=;j<=t;j++) {
scanf("%d",&x);
pre[x]=lst; lst=x;
}
}
for (int i=;i<=n;i++) { //前缀优化建图
add_edge(*i,*i+); //u->U
add_edge(*i+,*i+); //U'->u'
if (pre[i]) {
add_edge(*pre[i]+,*i+); //Upre[x]->U
add_edge(*i+,*pre[i]+); //U'->U'pre[x]
add_edge(*i,*pre[i]+); //u->U'pre[x]
add_edge(*pre[i]+,*i+); //Upre[x]->u'
}
} for (int i=*;i<=n*+;i++)
if (!dfn[i]) tarjan(i);
for (int i=*;i<=n*+;i++)
if (c[i]==c[i^]) return puts("NIE"),;
puts("TAK");
return ;
}
BZOJ-3495 前缀优化建图2-SAT的更多相关文章
- 2-SET 前缀优化建图
1, Duff in Mafia CodeForces - 587D 2, Ants CodeForces - 1007D
- BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图
Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...
- BZOJ 3073: [Pa2011]Journeys Dijkstra+线段树优化建图
复习一下线段树优化建图:1.两颗线段树的叶子节点的编号是公用的. 2.每次连边是要建两个虚拟节点 $p1,p2$ 并在 $p1,p2$ 之间连边. #include <bits/stdc++.h ...
- BZOJ 4289 最短路+优化建图
题意:给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权. 解法:参考h ...
- bzoj3073: [Pa2011]Journeys 线段树优化建图
bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...
- 【BZOJ4383】[POI2015]Pustynia 线段树优化建图
[BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...
- AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...
随机推荐
- number框
因为系统的number框无法设置样式,所以休息无聊时写了一个简单的模拟number框的插件,效果不是很完善,有一些功能可能没注意到 // 简单的模拟number框插件 // 布局: // <di ...
- crontab+selenium不能定时执行测试的原因
上一篇我提到用无界面selenium实现网页的自动签到.本来测试好好 的没问题,但是加进crontab定时任务却一点动静页没有,后来发现是浏览器的显示问题,自动任务要这样写: 12 3 * * * e ...
- Python自动补全缩写意义
自动补全的变量的类别p:parameter 参数 m:method 方法(类实例方法)调用方式classA aa.method()或者classA().method() c:class 类 v:var ...
- linux文件查找工具——locate,find
一文件查找介绍 文件的查找就是在文件系统上查找符合条件的文件. 文件查找的方式:locate, find非实时查找也就是基于数据库查找的locate,效率特别高. 实时查找:find 二locate ...
- POJ 3159 Candies(spfa、差分约束)
Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...
- SQL中LEFT JOIN ON AND 与 LEFT JOIN ON WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. ON...WHERE ' order by ts.id SQL执行过程: 生成临时表: ON条件: ...
- java web项目的https配置
1.进入到jdk下的bin目录 keytool -v -genkey -alias tomcat -keyalg RSA -keystore d:/tomcat.keystore -validity ...
- centos7实现ssh免秘钥分发
centos7的秘钥分发与centos6的秘钥分发还有点不一样,今天在给朋友排坑,在网上找了半天,也没有一个好解决方法,就只能自己研究,今天就把我解决的问题分享出来:那么如何实现centos7秘钥分发 ...
- 【Flutter学习】可滚动组件之SingleChildScrollView
一,概述 SingleChildScrollView类似于Android中的ScrollView,它只能接收一个子Widget.定义如下: 二,构造函数 const SingleChildScroll ...
- php中的list()
list()在php中上一个语言结构,并不是一个函数.类似array(),不过array()这个东西我们现在一般很少使用了,因为从php5.4版本开始,我们会直接使用[]来定义数组. 那么,list( ...